Publishing Document

Roid Racer
[image: image1.png]
Bottled Storm
	Norm Kelley
	nkelley@fullsail.edu

	John Rodenburg
	rodenbjc@gmail.com

	James Leonis
	Virus2566@gmail.com

	Winston Miller
	doveiya@hotmail.com

	Joshua Johns
	johnsj@fullsail.edu

1Game Charter

1Vision Statement

1Meeting Schedule

2Hours Worked per Week

2When Things Go Wrong

3Decision-Making Process

3Rules of Conduct

4Team Roles

6Executive Summary

6High Concept

6Locale

6Genre

6Basic Controls

6Game Goal

7Target Platform

7Marketing & Target Audience

7Game Walkthrough/Overview

8Key Features

8Comparative Products

8How this Product Stacks up

9Treatment

9Dust Jacket Story

9Game Story

10Vehicles

19Ship Upgrades

21Race Pickups

26Art and Production Design

26Art & Animation Style

26Sound Effects Style

26Music Style

27Sample Art

28Interactivity

28Goal

28Controls

31Interface

41Interactive Rhythm

41How the Player Marks Progress

42Detailed Design Breakdown

42Front End Flow Chart

43Game Flow Chart

44Glossary of Terms

46Vehicles

51Weapons

56Race Pickups

59Upgrades

60Levels and Maps

66Combat System

71Sense of Speed

72Game Logic, Algorithms, and Rules

72Interaction Component Matrix

72Key Game Algorithms

76FAQ

79Reference of Key Elements

79Scoring

79Winning/Losing

79Transitions

80Rewards

81Art and Production Design

813D Art & Animation Deliverables

822D Art (HUD/Menu/Particle/Textures) Deliverables

84Sound Effects Deliverables

85Music Deliverables

86Cutscenes/Pre-rendered scene Deliverables

87Coding Standards

87Prudence Clause

88Naming Standards

89Prefix Convention

91Structures

91Classes

91Relevant Function Names

92Macros and Constants

92Summary of Naming Convention

93Commenting

95Data Alignment

96Coding Guidelines

97Development Environment

98Timing Specifications

99System Architecture

104System Feature Breakdown

104Singleton

105CBucket

108CBucketItem

109CCameraManager

112CAIManager

114CSoundManager

115CTimer

117CDirect3D

118CAssetManager

121CEffectSystem

123CHUD

124CFontManager

125CMenuSystem

127Game Feature Breakdown

127CGameManager

128CPlayer

132CTrack

133CCollisionManager

135Milestone Deliverables

138Appendix A

138Memory Map

139Integration Plan

140Testing Plans

142Appendix B

142Game Folder Hierarchy

Game Charter

Vision Statement

We at Bottled Storm Studios have the vision and direction to ensure that every member in our team walks away from their project with tangible knowledge and experience that will help improve their skill set for the future. To do so, we would like to create a game that is unique and challenges our skills as Game Designers. Bottled Storm strives to create an atmosphere of personal accountability for everyone on our team. We will require each member to meet or discuss their current tasks at least once a daily. We want to explain our current status to each other, because we want be able to communicate progress or problems and resolve any issues as quickly as possible. Learning and teamwork are the cornerstones of our effort to complete a game, and we plan on working hard every day to make ourselves and everyone around us better. We encourage our members to work together using pair and group programming and share their experiences with one another to promote productivity and creativity.
Meeting Schedule

During GPP:

· Meeting 3 days a week, minimum of 4 hours per day.

· Meetings are to be Monday through Friday.

During GPA:

· Meeting 4 days a week

· Meetings will coincide with the scheduled class times.

· Sunday will also be a scheduled meeting day.

During GP:

· Our core hours are 12 – 6

· All members are to work 40 hours per week.

Meetings will begin at Full Sail’s campus, where the final destination will be determined. After the workplace destination has been decided, we will all migrate to the determined place. From there we will do a turbo team and acclimate ourselves to the changes in the code base. Our meeting time will not last longer then 8 hours. Each individual is required to list his latest progress and to work on his scheduled tasks.
Hours Worked per Week

During GPP:

· We will meet 12 hours per week

i. 6 hours are lab time

ii. 6 hours are outside time, concentrated on 4 hours on Saturday.

iii. Availability outside of meeting hours over Ventrilo.

During GPA:

· We will meet 20 hours per week
i. 12 hours of lab per week.

ii. 8 hours outside of lab per week

iii. Availability outside of meeting hours over Ventrilo.

During GP:
· We will work 30 hours per week

i. 6 hours of work a day will be put into the project, must be available over Ventrilo.
ii. Meet once per week to discuss performance and challenges.
When Things Go Wrong

In the case of an emergency the team member affected, if able, will contact the project leader, or any member they can contact. The project lead will be responsible for handling and dispatching a plan to counter the current situation. The project lead will also contact the EP and notify them of the issue.

Hurricane
If a hurricane requires evacuating or taking shelter, everyone should work to find a way to get in contact with each other. First make sure everyone is fine, and find out if it is feasible to do any work, or if the team should just wait it out.

Laptop failure
Everyone on the team has a desktop at home, so until their laptop is restored, all that persons work is done at their house, and at team meetings, they must take meeting notes on paper, or have the notes sent to them.

Personal Issues
In the event of a problem that the person must leave for and address, they will contact at least one other team member (who will contact the rest.) Depending on the emergency, the team will then split the persons work among themselves.

Loss of group member
All the persons work will be split among the group. To prevent confusion, ahead of time there will be heavy commenting within all code so that all remaining can understand the work done. In addition, there will be a number of group meetings to rework scheduling and determine if any features must be dropped.

Sickness
The person who is sick will be given work to do, but far less then the rest of the group, and depending on the sickness may not be required to come to team meetings.

Server Failure
Group members should take the responsibility of backing up all their work on their local drives. In the event of a server failure the group would be able to salvage as much as possible.
Decision-Making Process

The decision making process will be facilitated via democratic consensus; the Project Lead will be responsible for making sure the conversation stays constructive. If a consensus cannot be reached there will be a vote taken and the next issue will be tackled. The maximum time an issue can be discussed is thirty minutes.
Rules of Conduct

All team members are expected to maintain a professional, constructive attitude during all team meetings and group code sessions.
· Playing games or web surfing is not allowed and will be noted as failure to comply with the needs of the group.
· Causing arguments and conflict is prohibited and will be noted and reported to an EP.

· Team members are expected to be on time to all meetings and class times.
· Code modules belong to the creator of said module and should not be modified without expressed consent of the creator.
Repeated failures to behave appropriately will result in team action against the offending team member. More than three offenses will result in report to Executive Producer and GP Games staff.

Team Roles

Administrative Roles

1. Project Lead – John Rodenburg
a. Responsible for maintaining schedule and time sheet documentation.

b. Responsible for maintaining updates to Gant chart.

c. Responsible for keeping log of teamwork issues.

d. Primary communicator with GP Games management.

2. Asset Lead – Winston Miller
a. Maintain communications with art team regarding creation and receipt of assets.

b. Schedule individual or team meetings with art team for review of assets.

c. Must create and manage the Asset List.

3. Technical Lead – Norm Kelley
a. Responsible for making technical decisions regarding the design and production of the underlying game technology.

b. Responsible for creating and updating system architecture and UML documentation.
4. Design Lead – Jim Leonis

a. In charge of design document updates.

b. In charge of finding the fun.

c. In charge of aesthetics.

5. Gameplay Lead – Joshua Johns

a. In charge of gameplay testers.

b. In charge of balancing game.

c. In charge of bug tracking.
Technical Roles

1. Artificial Intelligence – Winston Miller / Norm Kelley
a. Rubber banding (Keeping the race even)

b. Attack and Defense Strategies
2. Rendering – Norm Kelley / Jim Leonis
a. Shaders

b. Particles

c. Culling
3. Collision – Norm Kelley / Jim Leonis
a. Players to Player

b. Player to Track

c. Player to Object
4. Object Management – Norm Kelley / John Rodenburg
a. Object Hierarchy
5. Input – Norm Kelley / Josh Johns
a. Controller

b. Keyboard

c. Arcade

6. Sound – John Rodenburg / Winston Miller
7. File I/O – Norm Kelley / Josh Johns
Executive Summary

High Concept

Race at dangerous high speeds with high stakes to win the race and compete against the best racers in the galaxy!
Locale

Roid Racer takes places in space in an asteroid field.

Genre

Combat Racing
Basic Controls

The camera is placed behind the racer and is in a third person mode by default. The player will have a rear view mode that you will be able to see what is behind you, as well as a first person mode that they can use to drive without the ship model.

Button controls:

Movement –- Accelerate, Decelerate, Turning
Weapons—Primary Weapon, Secondary Weapon

Boost—Use Boost
During menus and race selection the player will be able to use their mouse freely to select options and change

Game Goal

The overall goal of the game is to win as many races as you can, while using a racer that is customizable. The player will racing at high speeds in order to get the fastest times while keeping your ship alive and destroying their opponents.
Target Platform
The game will be developed for the PC.

Minimum Requirements:

· 1.5 GHz processor

· 512 MB of RAM

· 2 GB of hard drive space

· 512 MB video card with support for shader model 2.0

Marketing & Target Audience

Roid Racer’s quick gameplay and combat style will attract people from many demographics. The main target market is players from ages 13 years old and up who enjoy racing games. Roid Racer’s space setting caters to the science fiction audience, similar to the technology of epic sagas such as Star Trek or Star Wars.
Game Walkthrough/Overview
At the beginning of the session the player will have a small amount of preparing to do. The first task will to be which game mode to choose, circuit or single race. The next task is to choose from one of the provided starting ships. Once the player has chosen their player they will be able to move into their hanger and prepare their racer. Inside the hanger they will be able to choose from any of the preset ship upgrades. Once the racer is prepared to compete they will continue onto the last step, race and difficulty selection.

The racer will move to the race selection screen where they will have the option of choosing how many and how difficult opponents would be. In addition to be able to choose their opponents difficulty, they will be able to choose how long their race is based off laps.
During the race the player will have a third person perspective view on their racer. They will have the option of changing their camera view to the rear view or cockpit views to look around their racer. When the race finishes the player will be returned to their hanger where they can get ready for their next race.
Key Features

 General Features

· Fast pace racing
· Environmental hazards

· Boost power-up system
· Combat

 Multiplayer Features

· Vertical viewports
· Increased fun factor

 Gameplay

· Upgradeable ships
· Dynamic race selections (number of laps)

Comparative Products
· Mario Kart

· Jak- X

· F-Zero

· Star Wars Episode I: Pod Racer
How this Product Stacks up

Roid Racer is very similar to that of Star Wars Episode I: Pod Racer’s gameplay with fast pace action that will require you to react quickly. The game will also have aspects of many combat racers out there similar to Jak-X and Mario Kart, the combat style and ability to hinder your opponents. This will create a huge fun factor and ensure that the player will be coming back for more.
Treatment

Dust Jacket Story

Hold on to the seat of your pants and power-up your shields! Try your best against the most skilled and ruthless racers from across the galaxy at the Smuggler Racing League, where the speeds are high and the stakes are higher! Compete on the fastest and most dangerous competition courses in the Universe in your quest to become the most dominate racer the Smuggler Racing League has ever seen!

Game Story

The Smuggler Racing League was formed by a rebel faction of United Federation of Galaxies (UFG) first as an invite only tournament for only the best pilots in the Galaxy. Over the years the races began to gain fame and popularity and most of all profitability. Officers from the UFG began to investigate the reports and quickly discovered the operations. The SRL was run by some of the most notorious characters in the galaxy and its operations were too much of a risk for the UFG to undergo a full scale war with the SRL supporters. The UFG failed to acknowledge the league and vowed to destroy it. For an entire decade the UFG sent exploratory missions to try and disrupt and destroy the leagues tracks and hangers. After much conflict and loss of ships on both sides, the UFG became stressed on resources and the leagues kingpin figures influenced the government into legalizing the Smuggler Racing League. There was compromise on both sides, the league remained in its traditional spot, but the UFG gets a cut off the top.
Currently the Smuggler Racing League attracts thousands from across the galaxy to watch and compete in this epic competition.
Vehicles

Name/ID

Light Ship 1 : PC/NPC
Brief Description

This is a ship that focuses more on speed and handling rather than durability and weapon power. It is both quick and agile, passing ships with ease.
Visual Design

The Light Ship 1 is a small pod that is not much larger than the racer themselves. The pod makes up the main chassis and it holds two engines to the main pod with streams of energy. The two engines on each side and small size make it easily maneuverable and very fast. The weapon systems are mounted on the top of either engine.

Back Story

N/A

Dialogue

· Engine Hum

· Accelerate

· Decelerate

· Damage

· Low Health Alert

Sample Picture
[image: image2.png]
Note: The outer shell would act as the engines in this image, and would not be connected physically at the rear.

Name/ID

Light Ship 2 : PC/NPC
Brief Description

This is a ship that focuses more on speed and weapon power rather than handling and durability. It is speedy, but at the same time has some powerful weaponry. Its tactics would be to demolish the competition and speed off to the finish line.
Visual Design

The light Ship 2 is a single engine uniform chassis. The engine is centerline and looks similar to old USA F-16 fighter engines. There are two wings on the side that span the entire vehicle. At the tips of the wings there are small X shaped fins that hold the weapon systems of the racer. This racer is faster and deadlier than all others.

Back Story

N/A

Dialogue

· Engine Hum

· Accelerate

· Decelerate

· Damage

· Low Health Alert

Sample Picture

[image: image3.png]
Note: wings would extend out over more of the body.

Name/ID

Average Ship : PC/NPC
Brief Description

This is a ship that focuses more on boost while maintaining a relatively even distribution of the remaining stats. While it is balanced, it can still pull off quick bursts of speed to overtake the opposition.
Visual Design

The average ship looks somewhat similar to the Light Ship 2, but with some major differences, namely its size. The Average Ship is average in size and has long cylindrical chassis, which has a single wing running under it. The wings are longer than the Light Ship 2 but are only about four meters wide, and do not take up the entire space of the ships chassis. The wings are also angled starting at the chassis about 20 degrees, and do not sport the X fins at the end of them. The racer has a center line cockpit and center line weapons system. The engine is four engines clustered together at the rear of the ship.
Back Story

N/A

Dialogue
· Engine Hum

· Accelerate

· Decelerate

· Damage

· Low Health Alert
Sample Picture

[image: image4.png]

Name/ID
Heavy Ship 1 : PC/NPC
Brief Description

This is a ship that focuses more on durability and weapon power rather than speed and handling. The main focus of this ship is to withstand damage while taking out the competition so that it can finish the race at its own pace.
Visual Design

The Heavy ship one is a massive single hull racer. It has six small engines clustered together in a square formation at the back. There are two fins that come off the back on either side that pose as stability rudders. The rudders are the highest point of the racer and the fins hold a straight line to the main hull. The ship is sturdy and sleek in design and holds one strong line except the large cannons on each side. The chassis is heavily plated and has a small windshield for viewing in the front center. The cannons look similar to chain guns or mini guns.
Back Story

N/A

Dialogue

· Engine Hum

· Accelerate

· Decelerate

· Damage

· Low Health Alert

Sample Picture
[image: image5.png]

Name/ID

Heavy Ship 2 : PC/NPC
Brief Description

This is a ship that focuses more on boost and weapon power rather than handling and shield. This ship is more focused on damaging the enemy, but is capable of quick bursts of speed for overtaking opponents.
Visual Design

The Heavy Ship 2 is an engine heavy weapon heavy monster. The Heavy Ship 2 has two engines that are mounted on the bottom of a single panel wing that is mounted to the top of the large chassis of the ship. The ship has four small lasers one on each side of either engine. The main chassis is large and bulky thus making this vehicle less maneuverable than other vehicles.
Back Story

N/A

Dialogue

· Engine Hum

· Accelerate

· Decelerate

· Damage

· Low Health Alert

Sample Picture
[image: image6.png]

Weapons

Name/ID
Laser

Brief Description

The laser is a single fire projectile weapon that fires straight forward and is fast in comparison to other projectiles and has a small impact and damage.

Visual Design

Lasers can vary in almost all attributes, size, color and rate of fire. They are visually similar to the laser fire seen in Star Wars, a fast projectile that looks similar to a colored bar of energy.
Name/ID
Missile
Brief Description

The missile is a single fire, projectile weapon that fires straight forward and is slow in comparison to other projectiles and has a large impact.

Visual Design

Missiles will emit a large light and are normally a single particle. They will emit an explosion upon impact. The missile looks similar to missile’s used in today’s military, a rocket projectile that is propelled from a rear engine linearly from the point it is fired.
Name/ID
Tractor Beam
Brief Description

The tractor beam is a single stream beam of energy that fires straight forward attempting to lock onto a vehicle ahead, once locked it brings the two vehicles together.

Visual Design

Solid beam of energy that will be emitted from the front of the ship
Name/ID
Blade Shield
Brief Description

Single use shield upgrade that makes vehicle shields do more damage to other vehicles when colliding.
Visual Design

Emitted from the side of the racer, the Blade Shield is a long electrical light that enhances the sides of the ship.
Name/ID
Spatial Swap
Brief Description

Is a single use, spatial transference utility item that locks onto the nearest forward vehicle and trades places.

Visual Design

Both ships are engulfed in a particles and beams and instantly swap spaces. The projectile looks similar to the bomb used in star fox, a floating sphere that moves slow, in comparison to other projectiles, but still faster than the top speed of a vehicle.
Name/ID
Gravity Mine
Brief Description

This gravity mine is a single use weapon that drops a mini black hole on the track. This weapon is dropped behind the vehicle to disrupt those behind them. This disk shaped bomb waits until an unsuspecting vehicle approaches, and activates a powerful gravitational force, pushing the caught vehicle down into the track to scrape the ground and slow them down.

Visual Design

This weapon is an oval shape cut in half. When deployed, its flat side rests on the ground, and two black stripes cross to form an ‘x’ on the surface. When activated, the black ‘x’ turns into red arrows and a visual distortion effect that looks similar to a black hole is rendered.

Name/ID

Exploding Mine

Brief Description

The exploding mine is a single use, deployable weapon that leaves a proximity mine on the track and has a large impact. Explodes after 15 seconds or when a vehicle is close enough.

Visual Design

This weapon is a spiky sphere floating above the track. When deployed, it is dropped on the ground, where it attaches a tether, and then floats above the anchor point to approximately the height most vehicles fly at. When detonated, it is consumed within a fiery explosion of shrapnel.

Name/ID

Disruptor Mine
Brief Description

Is a single use, deployable weapon that disrupts the electrical system of vehicles. While disrupted, vehicle shields are inoperative and steering is difficult. Explodes after 15 seconds or when a vehicle is close enough.

Visual Design

This weapon is composed of several rectangular rods arranged in a spherical pattern, where the center of each rod would logically mark the center of the “sphere.” When deployed, it is dropped on the ground as a perfectly round metallic sphere. When a vehicle approaches, rectangular metal rods spring out. The rod is also metallic, with red paint on the exposed ends. The mine attaches itself to said vehicle, where arcs of lightning are shot out into the vehicle itself. It is most similar in shape to an underwater mine, though the spikes are replaced with magnet bars.
Ship Upgrades

Name/ID

Upgrade Weapon
Brief Description

Power-up will increase the player’s weapon attribute by one point which in turn reduces the primary laser weapon’s rate of fire.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. Inside the border is a neon yellow laser streak traveling from bottom right to top left. Around the circle is a thin, gold, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Upgrade Shield
Brief Description

Power-up will increase the player’s shield attribute by one point which in turn increases the amount of damage the shield can withstand before becoming ineffective.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The image is a solid blue shield. Around the circle is a thin, gold, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Upgrade Hull
Brief Description

Power-up will increase the player’s armor attribute by one point which in turn increases the amount of damage the vehicle can withstand before becoming inoperative.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The icon will have a picture of a small red ship. Around the circle is a thin, gold, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Upgrade Speed
Brief Description

Upgrade will increase the player’s speed attribute by one point which in turn increases the top speed of the vehicle.
Visual Design

Upgrade will be a 2D circle image with a dark gray border and a light gray interior. The icon will be a blue lightening bolt. Around the circle is a thin, gold, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Upgrade Boost
Brief Description

Upgrade will increase the player’s boost attribute by one point which in turn increases the duration of boosting the vehicle above its top speed.
Visual Design

Upgrade will be a 2D circle image with a dark gray border and a light gray interior. The icon will be a picture of an orange rocket. Around the circle is a thin, gold, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Upgrade Stability
Brief Description

Upgrade will increase the player’s stability attribute by one point which in turn increases the vehicle’s rate of turn.
Visual Design

Upgrade will be a 2D circle image with a dark gray border and a light gray interior. The icon will be a picture of a green double sided arrow pointing left and right. Around the circle is a thin, gold, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Race Pickups

Name/ID

Weapon Pickup
Brief Description

The most common race pickup, the weapon pickup allows the player to acquire a single shot of a random secondary weapon.
Visual Design

Pickup will be a 2D circle image with a dark gray border and a light gray interior. The icon is a yellow crosshair that is circular and has an X crossing inside the circle. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Power-Up Shield Regeneration
Brief Description

Power-up will place an icon in either an empty utility slot or the current utility slot. When activated, the vehicle will have its shield energy fully replenished.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The icon will have a blue shield inside it which will represent shields. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Power-Up Hull Regeneration
Brief Description

The power-up will be activated when the vehicle collides with it, the player will have their overall health replenished slightly.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The icon will be a small solid red ship icon. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Name/ID

Power-Up Boost Regeneration
Brief Description

Power-up will place an icon in the secondary slot. When activated, the vehicle will have their overall health replenished slightly.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The icon will be a small rocket shaped image. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Levels and Maps

Name/ID
Elysian Field
Goal

The main goal of this course is to win the race by placing higher or crashing out the other racers.
Brief Description

Each major asteroid has a nickname given by the drivers. Each asteroid has special characteristics and relative driving strategies that are reflective of their given name.
Pestilence

1. The first major asteroid. The start of the race is located here.

2. This asteroid is covered with boulders, protrusions, and spires.
3. The course, aside from the debris, is composed of short straight sections and gentle to moderate curves.

4. The race course itself is treacherous for its requirements for fast dodging and weaving through the inside of the asteroid.

War

1. The second major asteroid.
2. Old debris from vehicles litters this track.

3. This asteroid’s course has long tight straight sections.

4. Most of the direct combat takes place here due to the plethora of these claustrophobic straight segments.

Famine

1. The third major asteroid.

2. The oldest asteroid, thus having the flattest terrain and relatively few natural features.

3. The race course features large open areas

4. Racers are prone to focus on boosting to take advantage of the open space. Combat is difficult due to the relative ease of dodging projectiles

Death
1. The fourth major asteroid.

2. Composed of weaving canyons and tunnels.

3. The course takes advantage of the natural dangers of this asteroid by forcing the racers into the canyons, off cliffs, and into the caves.

4. Extremely treacherous due to the many blind turns and tight spaces. Most of the non-combat crash outs take place on this asteroid.

Back Story

After the shutdown of gambling cartels across the galaxy by the Federation government, the Smuggler Racing League was formed. One of the first tracks built was this track, hidden in the fringes far from the galactic core, inside a then uncharted asteroid field. Underground racers found this course through word-of-mouth, and had to get in contact with SRL agents in order to be ferried to the hidden location.

After the relaxation of gambling laws, the course no longer needed to stay hidden, but it’s notoriety for being the most dangerous course in the galaxy remained intact.

The name Elysian Field was later given to the asteroid field, due to the mythic status of the race track, and the number of elite racer’s lives it has claimed.

Visual Design

The race course is hidden in the middle of a large asteroid field. The course is laid out across several large asteroids and many smaller meteorites orbiting around a large central space station. The space station is where the racers and observers convene before races, the vehicle hangers, the bets, and other such functions. It looks like downtown Las Vegas, with the bright lights and neon cleverly overshadowing the station’s wear and tear from years of constant use by its less-than-legal tenants.

The race course proper begins on the largest asteroid. Three other asteroids of comparable size are also arranged around the central station. A myriad of smaller asteroids are spaced between the larger asteroids and serve as lily pads for the racers jumping between the larger asteroids. Each large asteroid is littered with craters, some as small as your hand, others dwarfing football stadiums. Occasionally the track lines up with one of these monolithic craters, where some can be jumped and others racers are dropped into. There are also scattered bits of natural rock sticking into the course, such as boulders and spires of various sizes. While the main track may have these scattered here and there due to erosion of countless races, outside the track is still extremely uneven and even dangerous to drive upon should an unlucky pilot find himself there.

At the startup line, there is the brightly lit stadium where thousands of tenants can get race-side seats. This is decorated by large screens detailing the status of the race and the vehicles. A large multicolored archway lies across the track, complete with lights, pyrotechnics, and the large “Christmas Tree” drag signal.
The course is marked by brightly lit poles on each side of the track. Each pole is connected to each other by a electric field, effectively making a wall on each side of the track. Racer parts are scattered around the base of these walls, evidence of the abuse they took from the ramming of careless racers.

Launch points for going from asteroid to asteroid are marked by a large toll-booth with clearly lit signs of which direction the magnetic accelerated jump below it will take the racer. Its columns are covered in scorch marks from the countless unfortunate racers who couldn’t make a decision.

The race track also has many other standard bits of paraphernalia, such as turn signs, hazard indicators, caution signals, scorch marks, and leftover vehicle parts of races gone by.
 Art and Production Design

Art & Animation Style

The game is all about high speed racing in space, and that’s what we want the visual style to focus on. Similar to the feel of F-Zero, we want this to be a futuristic racer with cars and levels that look like they are built for speed. The game is set in the future, and the look of the car models should reflect this. The cars float off the ground, being able to adjust to the rocky terrain of the asteroids. The vehicles themselves should be space-ships especially built to maneuver the rocky terrain, similar in style to space fighters seen in movies like Wing Commander or Star Wars.
Sound Effects Style

The game is a combat racer, thus we want the effects to convey the illusion that the player is caught up in a high octane firefight. There should be sounds for when the lasers or projectile weapons fizz by or hit your ship, similar to the sounds of laser fire from a blaster in Star Wars or Star Trek. There should be the sharp hum of the high speed engines used by the racers, along with the sounds of metallic grinds when those racers drive their cars to the ground after hitting a mine or missing a sharp turn. Like in F-Zero, there should be a sound for when the user bounces off the wall of the track, some kind of shock or electrical static. There must also be metallic explosions for when the player crashes or takes a hit from an enemy laser. These should all sound quick and sharp, as the player should feel like these noises are whizzing by as we zip along the track, to add to the illusion of high speed.

Music Style

The music for the game should reflect the energy we want the player to experience, thus we would like it to be very fast paced and lively, but with a rock edge to reflect the danger of the situation. A good comparison would be the music of Dragonforce, a band known for its extremely fast guitar riffs and high energy, though maybe without the 80’s singing. Another good reference would be the music of the game F-Zero, which features a high upbeat soundtrack for each level.
Sample Art

[image: image7.png]
Interactivity

Goal

The goal of Roid Racer is first and foremost to finish the race. The player will be racing across asteroids while avoiding hazards to get the fastest time. The player will be able to acquire points while in the race. Points will be acquired by various game actions and the combination of points and time will get you on top of the leader boards!

Controls

[image: image8.png]
· Keyboard

· During gameplay

· On asteroid

· A – Strafe left

· D – Strafe right

· W – Increase throttle

· S – Decrease Throttle

· Left mouse click – Fire primary weapon

· Right mouse click – Fire secondary weapon

· Shift – Use boost

· Flying between asteroids

· A – Move ship left

· D – Move ship right

· W – Move ship upward

· S – Move ship downward

· Shift – Boost

· During menus

· Move mouse – Position the cursor on the screen

· Left mouse click – Select menu item

[image: image9.png]
· Arcade

· During gameplay

· On asteroid

· Left on joystick – Strafe left

· Right on joystick – Strafe right

· Up on joystick – Increase throttle

· Down on joystick – Decrease throttle

· Top orange button – Fire primary weapon

· Top yellow button – Fire secondary weapon

· Middle orange button - Boost

· Flying between asteroids

· Left on joystick – Move ship left

· Right on joystick – Move ship right

· Up on joystick – Move ship upward

· Down on joystick – Move ship downward

· Middle orange button - Boost

· During menus

· Up on joystick – Move menu cursor up

· Down on joystick – Move menu cursor down

· Top orange button – Select menu item

[image: image10.png] [image: image11.png]
· 360 Controller

· During gameplay

· On asteroid

· Left on joystick/left on D-Pad – Strafe left

· Right on joystick/right on D-Pad – Strafe right

· Up on joystick/up on D-Pad – Increase throttle

· Down on joystick/down on D-Pad – Decrease throttle

· Right trigger – Fire primary weapon

· Left trigger – Fire secondary weapon

· B - Boost

· Flying between asteroids

· Left on joystick/left on D-Pad – Move ship left

· Right on joystick/right on D-Pad – Move ship right

· Up on joystick/up on D-Pad – Move ship up

· Down on joystick/down on D-Pad – Move ship down

· During menus

· Up on joystick/up on D-Pad – Move menu cursor up

· Down on joystick/down on D-Pad – Move menu cursor down

· A – Select Menu item
Interface

Main Menu
[image: image12.png]
The Main Menu features a title bar at the top (1), with the player’s menu options placed to the lower right (2). These include Quick Play, which will jump the player into the game, Credits and Options, explained later, and Exit, which will shut down the game and return the user to their OS. When a choice has the mouse over it or is selected by controls, the selection font will change color and the box around will also change color to highlight the selection. When the Credits or Options selection is chosen, the menu options will shrink and scroll to the bottom left to allow for a small screen to pop up from the bottom right. When any option is chosen, there will be a quick sound effect to indicate a selection has been made, followed by a subtle swoosh sound if the menu options are moved. In the background (not pictured), should be a view of space that features the model of our space station, rotating along with the meteors that orbit it.

Options
[image: image13.png]
The Options screen allows the user to alter settings to improve gameplay. These selections include the volume of music and sound effects as well as the Gamma of the screen. The options can be manipulated by moving a slider button along a slider bar, with the text number displayed to the right. When the slider is moved in the volume or sfx option, a small sound will play when the slider has stopped, to indicate the current volume level. Each selection will change color when it is selected by the controls or the mouse is over it, to indicate which option is being manipulated.

Credits

[image: image14.png]
The Credits menu is similar in look to the options screen, but does not have any options, instead featuring scrolling text that displays the names of the group members and game contributors. The text will disappear as it reaches the line below the Credits title. The back to main menu option is always selected, so the user can just hit the selection button to return to the main menu screen, but the options font and border will change color if the selection has the mouse over it.

Hangar

[image: image15.png]
The Hangar allows the player to select and make upgrades and changes to a vehicle to use in the race. The Hangar background should be a model of the hangar bay, with the center being a small area that features the 3D model of the ship the player has currently selected (1). At the bottom shows a selection bar (2) that features the current list of items the player can choose from, whether it is ships, or upgrades. The player will first choose their ship, once the ship is chosen, the bar which holds the selections, will flip over, having the upgrades displayed for selection. The current item selected will be surrounded by a large border, which moves when the user uses the left or right buttons to select a new ship or item. The description will also change to reflect the new selection. In the case of upgrades, the selections will fade and grey out when the user cannot select that particular item. The user can use the mouse to scroll the bar or select items, and can also press up to reach the back to main menu selection. In the case of mouse use, the selection border as well as the back to main menu font and border will change color upon mouse over. The yellow arrow boxes on the left and right of the selection bar can be used by the mouse to scroll the selection bar, though this can also be done by using the left and right keys to move the selection box.

HUD

[image: image16.png]
The HUD is the main screen for game play, as this is the screen where the race will take place. The whole screen is dedicated to showing the current view of the racetrack and where the player’s vehicle is currently, with small panels providing necessary information bordering the screens view. At the top left (1) is the player’s current rank, which is updated if the player falls behind or overtakes another vehicle. If the player is in the top three, the box will be large and the fill will be green, while if they are at a lower rank the box will shrink slightly and the fill will turn red. At the center (2) is a timer, which records the player’s current overall time in the race. Below this is a box which records the current points of the player. At top right (3) is a mini-map, showing the player’s current position and a small image of the asteroid or star path the player is following. At the bottom right (4) is the player’s speedometer, showing their current speed, as well as the boost meter, which fills or decreases as the player gains or uses up his boost power. The boost meter has three levels, and when a boost is used, the meter will turn red and drain to the next level. Finally, in the bottom left (5) is the player’s hull and shield indicator. The green outside border indicates the shield, while the yellow border indicates the hull level. This indicator flashes red when the player is hit, and both levels decrease and increase in blocks depending on the current amount of shield or hull the player has.

Pause Screen

[image: image17.png]
The pause menu has the same options as the options screen, but is overlaid on top of the player’s current HUD screen. When the slider is moved in the volume or sfx option, a small sound will play when the slider has stopped, to indicate the current volume level. Each selection will change color when it is selected by the controls or the mouse is over it, to indicate which option is being manipulated. The bottom controls will also change font and border color if selected or they have the mouse over them.

Results
[image: image18.png]
The Results page, as titled, features the results and standings of the race upon its completion. Underneath the page title is a box that shows the users rank, while below that is a list of the names, times, and ranks of all other players within the race. Upon hitting the selection button on the user’s controller, the menu will fade into the High Score screen.

High Score
[image: image19.png]
The High Score table shows the current list of High Scores in the game, including the name, time, score, and rank of each entry. If the player has reached a high score upon finishing the race, this is where they will be allowed to enter their name. The bottom options will also change font and border color if selected, which can be done by using the left and right keys on the respective controller, or they have the mouse over them.

Interactive Rhythm

Game Time
· 2:30 min per lap

· 1-5 lap

· Typical Play Session: 7:30 min

· Entire Game: 13:00 min

Replay Value

· High Score

· Different customizations

· Multiplayer

How the Player Marks Progress

The player will be able to see what place they are currently in as well as see how much time has elapsed. The player will also be able to see how many points they have currently.

Racing
· Start/Finish

· Checkpoints
· Ship hull monitor

· End Race Rank Screen
· High Score Screen
Detailed Design Breakdown

Front End Flow Chart

[image: image20.png]
Game Flow Chart

[image: image21.png]
Glossary of Terms

	Accelerate
	To gain speed until the top speed is reached.

	Boost (Attribute)
	Attribute of a ship used to determine the speed at which boost drains from the ship.

	Boost (Behavior)
	The act of a ship using boost to gain more speed.

	Take Damage
	The ships hull/shield decreases based on the type of damage taken.

	Die
	The ships hull/shield decreases based on the type of damage taken.

	Turn
	Strafing left and right on the track.

	Shoot
	Fire some sort of projectile at a rival ship.

	Drop Mines
	Place a mine on the track for other racers to run over.

	Shield Recharge
	Attribute that indicates how fast the ships shield regenerates.

	Bumping
	Bumping other ships to damage them and slow them down.

	Ship Attribute
	Attributes of a ship that governs how a ship handles.

	Speed (Ship)
	Attribute used to determine the maximum speed of a ship.

	Handling
	Attribute that indicates a ships ability to turn proficiently.

	Shield
	Attribute that determines the amount of shield a ship has. Shield value goes down when a ship takes damage.

	Hull
	Attribute that determines the amount of hull a ship has. Hull value goes down when a ship takes damage. This value does not regenerate unless the user receives a hull pickup.

	Weapon
	Attribute that determines how powerful the ships weapons is.

	Fire
	Projectile goes straight after being fired from the ship.

	Speed (Weapon)
	How fast the Weapon travels once fired.

	Damage
	How much damage a weapon does to other ships.

	Activate
	A weapon is activated and then lasts for a set duration.

	Duration
	How long a weapon lasts after it is used.

	Single Use
	Weapon can only be used once.

	Drop
	Weapon is dropped on the track in wait for a vehicle to get near it.

	Explode within proximity
	Weapon explodes when another ship gets within a certain distance from it.

	Large amount of damage
	The weapon produces a lot of damage when connecting with another ship.

	Temporary
	Weapon only stays on the track for a certain amount of time.

	Handling
	How stable a ship is during turning.

	Pickup
	An item on the track that can be picked up by any ship

	Upgrade
	An upgrade changes an attribute by the indicated value.

	Checkpoints
	A particular part of the race where the game updates the racer’s progress

	Boost Ring
	A ring placed on the Fly Rail that the user must time his boost button in order to achieve boost regeneration.

	Space Jump
	A ramp that launches the player from the Race rail section into the Fly rail section.

	Landing Platform
	A section of the track where the Fly rail transitions into the Race rail.

	Fly Rail
	The section of the track where the player flies through space between asteroids.

	Race Rail
	The section of the track where the player races on the asteroids.

	Boost Level
	Each vehicle has a max of 3 boost levels. As a boost is activated, it will drain until it reaches the next level.

	Shield Level
	The shield level is the current damage percentage 1(low) – 100(high) that the shield has.

Vehicles

Attributes based on a scale of 1(low)-100(high).

Name/ID

Light Ship 1 : PC/NPC
Brief Description

This is a ship that focuses more on speed and handling rather than hull and weapon power. It is both quick and agile, passing ships with ease.
Visual Design

The Light Ship 1 is a small pod that is not much larger than the racer themselves. The pod makes up the main chassis and it holds two engines to the main pod with streams of energy. The two engines on each side and small size make it easily maneuverable and very fast. The weapon systems are mounted on the top of either engine.

Behaviors

	Behavior
	Affects

	Accelerate
	Speed

	Boost
	Speed

	Take Damage
	Shield/Hull

	Die
	Hull

	Turn
	Handling

	Shoot
	Weapon

	Drop Mines
	Weapon

	Shield Recharge
	Shield

	Bumping
	Shield/Hull

Attributes

	Attribute
	Value

	Speed
	90

	Handling
	80

	Boost
	70

	Shield
	70

	Hull
	50

	Weapon
	60

Name/ID

Light Ship 2 : PC/NPC
Brief Description

This is a ship that focuses more on speed and weapon power rather than handling and hull. It is speedy, but at the same time has some powerful weaponry. Its tactics would be to demolish the competition and speed off to the finish line.
Visual Design

The light Ship 2 is a single engine uniform chassis. The engine is centerline and looks similar to old USA F-16 fighter engines. There are two wings on the side that span the entire vehicle. At the tips of the wings there are small X shaped fins that hold the weapon systems of the racer. This racer is faster and deadlier than all others.

Behaviors

	Behavior
	Affects

	Accelerate
	Speed

	Boost
	Speed

	Take Damage
	Shield/Hull

	Die
	Hull

	Turn
	Handling

	Shoot
	Weapon

	Drop Mines
	Weapon

	Shield Recharge
	Shield

	Bumping
	Shield/Hull

Attributes

	Attribute
	Value

	Speed
	90

	Handling
	60

	Boost
	70

	Shield
	70

	Hull
	50

	Weapon
	80

Name/ID

Average Ship : PC/NPC
Brief Description

This is a ship that focuses more on boost while maintaining a relatively even distribution of the remaining stats. While it is balanced, it can still pull off quick bursts of speed to overtake the opposition.
Visual Design

The average ship looks somewhat similar to the Light Ship 2, but with some major differences, namely its size. The Average Ship is average in size and has long cylindrical chassis, which has a single wing running under it. The wings are longer than the Light Ship 2 but are only about four meters wide, and do not take up the entire space of the ships chassis. The wings are also angled starting at the chassis about 20 degrees, and do not sport the X fins at the end of them. The racer has a center line cockpit and center line weapons system. The engine is four engines clustered together at the rear of the ship.
Behaviors

	Behavior
	Affects

	Accelerate
	Speed

	Boost
	Speed

	Take Damage
	Shield/Hull

	Die
	Hull

	Turn
	Handling

	Shoot
	Weapon

	Drop Mines
	Weapon

	Shield Recharge
	Shield

	Bumping
	Shield/Hull

Attributes

	Attribute
	Value

	Speed
	70

	Handling
	75

	Boost
	80

	Shield
	60

	Hull
	70

	Weapon
	65

Name/ID

Heavy Ship 1 : PC/NPC
Brief Description

This is a ship that focuses more on hull and weapon power rather than speed and handling. The main focus of this ship is to withstand damage while taking out the competition so that it can finish the race at its own pace.
Visual Design

The Heavy ship one is a massive single hull racer. It has six small engines clustered together in a square formation at the back. There are two fins that come off the back on either side that pose as stability rudders that affect handling. The rudders are the highest point of the racer and the fins hold a straight line to the main hull. The ship is sturdy and sleek in design and holds one strong line except is large cannons on each side. The chassis is heavily plated and has a small windshield for viewing in the front center. These cannons can hold any ammunition in the game and look similar to a chain gun or mini gun.
Behaviors

	Behavior
	Affects

	Accelerate
	Speed

	Boost
	Speed

	Take Damage
	Shield/Hull

	Die
	Hull

	Turn
	Handling

	Shoot
	Weapon

	Drop Mines
	Weapon

	Shield Recharge
	Shield

	Bumping
	Shield/Hull

Attributes

	Attribute
	Value

	Speed
	60

	Handling
	50

	Boost
	70

	Shield
	70

	Hull
	80

	Weapon
	90

Name/ID

Heavy Ship 2 : PC/NPC
Brief Description

This is a ship that focuses more on boost and weapon power rather than handling and shield. This ship is more focused on damaging the enemy, but is capable of quick bursts of speed for overtaking opponents.
Visual Design

The Heavy Ship 2 is an engine heavy weapon heavy monster. The Heavy Ship 2 has two engines that are mounted on the bottom of a single panel wing that is mounted to the top of the large chassis of the ship. The ship has four small lasers one on each side of either engine. The main chassis is large and bulky thus making this vehicle less maneuverable than other vehicles.
Behaviors

	Behavior
	Affects

	Accelerate
	Speed

	Boost
	Speed

	Take Damage
	Shield/Hull

	Die
	Hull

	Turn
	Handling

	Shoot
	Weapon

	Drop Mines
	Weapon

	Shield Recharge
	Shield

	Bumping
	Shield/Hull

Attributes

	Attribute
	Value

	Speed
	70

	Handling
	60

	Boost
	90

	Shield
	50

	Hull
	70

	Weapon
	80

Weapons

Name/ID

Laser

Brief Description

The laser is the single fire primary weapon for each ship. The laser is the only weapon that can be equipped to the player’s primary attack. It is a projectile weapon that fires straight forward; the projectile is fast with a small impact.

Visual Design

Lasers can vary in almost all attributes, size, color and rate of fire. They are visually similar to the laser fire seen in Star Wars, a fast projectile that looks similar to a colored bar of energy.
Behaviors

· Fire
Attributes

· Speed: 1.75 X max ship speed
· Damage: 25% shield/Hull
Name/ID

Missile

Brief Description

The missile is a single fire projectile weapon that fires straight forward. The missile is slower than the laser and packs a large impact.

Visual Design

Missiles will emit a large light and are normally a single particle. They will emit an explosion upon impact. The missile looks similar to missile’s used in today’s military, a rocket projectile that is propelled from a rear engine linearly from the point it is fired.
Behaviors

· Fire
Attributes

· Speed: 1.75 X max ship speed
· Damage: 25% shield/Hull
Name/ID

Tractor Beam

Brief Description

The tractor beam is a single stream beam of energy that fires straight forward attempting to lock onto a vehicle ahead, once locked it brings the two vehicles together.

.

Visual Design

Solid beam of energy that will be emitted from the front of the ship
Behaviors

· Fire
Attributes

· Speed: Decreases speed of front vehicle, increases speed of back vehicle
Name/ID

Blade Shield

Brief Description

Single use shield upgrade that makes vehicle shields do more damage to other vehicles when colliding. Expires after 15 seconds.

Visual Design

Emitted from the side of the racer, the Blade Shield is a long electrical light that enhances the sides of the ship.
Behaviors

· Activate
Attributes

· Damage: 15% shield/Hull
· Duration: 15 seconds
Name/ID

Spatial Swap

Brief Description

Is a single use, spatial transference utility item that locks onto the nearest forward vehicle and trades places.

Visual Design

Both ships are engulfed in a particles and beams and instantly swap spaces. The projectile looks similar to the bomb used in star fox, a floating sphere that moves slow, in comparison to other projectiles, but still faster than the top speed of a vehicle.
Behaviors

· Fire
Attribute

· Victims Position: Swapped with Shooters Position

Name/ID

Exploding Mine

Brief Description

The exploding mine is a single use, deployable weapon that leaves a proximity mine on the track and has a large impact. Explodes after 15 seconds or when a vehicle is close enough.

Visual Design

This weapon is a spiky sphere floating above the track. When deployed, it is dropped on the ground, where it attaches a tether, and then floats above the anchor point to approximately the height most vehicles fly at. When detonated, it is consumed within a fiery explosion of shrapnel.

Behaviors

· Single use

· Drop on track

· Explode within proximity

· Large amount of damage

· Temporary: explodes after 15 seconds

Attributes

· Damage: 25% shield/Hull
· Duration: 15 seconds
Name/ID

Gravity Mine

Brief Description

This gravity mine is a single use weapon that drops a mini black hole on the track. This weapon is dropped behind the vehicle to disrupt those behind them. This disk shaped bomb waits until an unsuspecting vehicle approaches, and activates a powerful gravitational force, pushing the caught vehicle down into the track to scrape the ground and slow them down.

Visual Design

This weapon is an oval shape cut in half. When deployed, its flat side rests on the ground, and two black stripes cross to form an ‘x’ on the surface. When activated, the black ‘x’ turns into red arrows and a visual distortion effect that looks similar to a black hole is rendered.

Behaviors

· Fire
Attributes

· Speed: 1.75 X max ship speed
· Damage: 25% shield/Hull
Name/ID

Disruptor Mine

Brief Description

Is a single use, deployable weapon that disrupts the electrical system on vehicles. While disrupted, vehicle shields are inoperative and steering is difficult. Explodes after 15 seconds or when a vehicle is close enough.

Visual Design

This weapon is composed of several rectangular rods arranged in a spherical pattern, where the center of each rod would logically mark the center of the “sphere.” When deployed, it is dropped on the ground as a perfectly round metallic sphere. When a vehicle approaches, rectangular metal rods spring out. The rod is also metallic, with red paint on the exposed ends. The mine attaches itself to said vehicle, where arcs of lightning are shot out into the vehicle itself. It is most similar in shape to an underwater mine, though the spikes are replaced with magnet bars.
Behaviors

· Drop
Attributes

· Shield: 0%

· Handling: Decreased to 40%

· Disruption Duration: 15 seconds

Race Pickups

Name/ID

Secondary Weapon

Brief Description

The most common race pickup, the weapon pickup allows the player to acquire a single shot of a random secondary weapon.
Visual Design

Pickup will be a 2D circle image with a dark gray border and a light gray interior. The icon is a yellow crosshair that is circular and has an X crossing inside the circle. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Behaviors

· PickUp
Attributes

· Weapon Given: Randomly Chosen
Name/ID

Power-Up Boost Regeneration
Brief Description

Power-up will place an icon in the secondary slot. When activated, the vehicle will have their overall health replenished slightly.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The icon will be a small rocket shaped image. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Behaviors

· PickUp
Attributes

· Ship’s Boost Level : +1
Name/ID

Power-Up Shield Regeneration
Brief Description

When activated, the vehicle will have its shield energy fully replenished.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The icon will have a blue shield inside it which will represent shields. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis

Behaviors

· PickUp
Attributes

· Ship’s Shield Level : 100%
Name/ID

Power-Up Hull Regeneration

Brief Description

The power-up will be activated when the vehicle collides with it, the player will have their overall health replenished slightly.
Visual Design

Power-up will be a 2D circle image with a dark gray border and a light gray interior. The icon will be a small solid red ship icon. Around the circle is a thin, silver, 3D circular ring (torus) which rotates once, 180° to the right on the Y axis.
Behaviors

· PickUp
Attributes

· Ship’s Shield Level : 100%
Upgrades

Name/ID

Attribute Upgrade

Brief Description

An attribute upgrade fills one of three slots on each vehicle, giving the named attribute +5 in the assigned statistics. The upgrade can affect any one of 6 statistics on the ship, including Top Speed, Ship Handling, Boost, Sheild, Hull, or Base Weapon Power.

Visual Design

The upgrades are chosen in the Hangar, and as such only seen as a small picture with a symbol denoting which upgrade is named.
Behaviors

· Activate
Attributes

· Ship’s Attribute : +5 to named attribute

Levels and Maps

Name/ID

Elysian Field
Goal

Finish the race, with the fastest time. Avoid hazards and complete the race alive to earn your place atop the leader boards.
Level Travel

The player will be placed at the starting line, when the race starts the speed will be very fast. The player will be hovering over the track at a low altitude. The sounds of systems powering up and being used go on throughout the game. Every action, shooting, crashing, boosting, all have unique futuristic sounds. The race starts and the player will see their time in the top of their screen ticking. The player will be racing as fast as they can while avoiding hazards and hitting the jump tubes that shoot them from one asteroid to another.
Scale

The track is roughly five kilometers in length.

Environmental Interactions - Behaviors

· Charge Boost Rings

· Timed correctly charges one section of boost

· Crash into Environment

· The player will be able to hit objects that are on the track
Attributes

· Crash into Environment

· Vehicle speed: reduced to 50%

· Vehicle damage: 10%

· Charge Boost Rings

· One boost meter refilled (33%)

Ambient Environmental Aspects/Objects in the Level

· Track

· Track borders

· Ramps

· Craters

· Track Obstacle(Metal Panel)

· Boost Charge Rings
· Asteroids
Time

Time is kept by a race timer that specifies time elapsed since the start of the race. Time will stop when the finish line has been crossed by the player and should be three minutes. Each asteroid part of the race should be no more than a minute long with transitions between asteroids being between 10 and 15 seconds.

Map

[image: image22.png]
Elysian Field - Overview

[image: image23.png]
Pestilence

[image: image24.png]
War
[image: image25.png]
Famine
[image: image26.png]
Death
[image: image27.png]
Level Walkthrough – Verbal Map

· Enter the level
· The player will be waiting at the finish line to start the race.

· Start the race
· When the race starts the player will be racing along the track as fast as they can.
· Gain Points

· Overtake and attack other racers for points

· Place as high as possible in the race

· Finish the race

· Cross the finish line before the other racers.

Combat System

· Real-time

· During asteroid racing only
· Primary Weapon (Laser)

· Secondary Weapon (Race Consumable)

· Race Consumables – (See weapon descriptions)

· Projectiles fired forward

· Droppable weapons

· Shields

· Block all damage (X amount of times)

· Determined by Shield stat

· Rechargeable

· Ships take damage- (Shields Disabled)

· Weapon Damage

· Environment damage

· Ship to ship collision damage

· Can crash out of race

· Three customizable upgrade slots (Choose any three, no doubles)

· Adds to ships stats

· Combat Resolution

The combat of Roid Racer will be fast paced and help to enhance the overall race experience. During the race there will be periodic weapon pickups. The player will be able to run over powerups during asteroid racing, or shoot them during the rail between each section of track. These pickups (see pickup description for details) will be one use consumables and gathering them would be done frequently. When the racers are on the asteroid they will be able to move left and right on the track, this allows for the player to line themselves up in front or behind their opponent and use the proper weapon successfully. During the jump rail the player will not be able to shoot other players, they will be fixed into the center position, the asteroids all around the player will be glowing and able to be shot, different color glows give different bonuses.

Ships will have an overall hull for the race which starts at 100%. When the ship’s shields are down the ship will take damage. When your hull reaches 0% your ship will be destroyed and you will lose the race. Shields are taken down by damaging the shields themselves. The higher the shield stat the more hits the shield can absorb before going down. When the shield is down there will be a refresh timer, when the refresh timer is done, the shield will recharge back to full strength.

The combat style will lend to a lot of dodging and picking apart your opponents to gain and defend your race position. While racing as fast as you can, your goal is to take down your opponents shields first, by shooting forward, dropping hazards behind, or using your racer to disable them. Once the shields are down on the opponent they will be vulnerable to damage to their vehicle, which could potentially put them out of the race. We wanted to add an aspect of bumping and competing for track space through small corridors and bottlenecks to make the racers more conscious of their current position and opponents around them.

Rail System

As a racing game, one of the most important aspects of the game is how the player will progress through the levels. For Roid Racer, we have decided to implement a rail system, which will give the player limited control over their vehicle while making sure that they stay along the track. This gives a method of focusing the design without worrying too much about the player breaking the system, as they will always be confined to the rail while racing. Rails can also be broken into sections and combined to make up a whole track, helping with both design and memory management. Conforming to the nature of our game, which allows the player to race on asteroids and then fly between them to reach the next, we have decided to split our level into two rail types, Race Rails and Fly Rails.

Race Rails are the actual asteroid levels, during which the player will be required to guide their ship left and right while maintaining top speed. These sections are most similar to typical racing games like Mario Kart or F-Zero, where the player has two buttons controlling their acceleration and deceleration, while using two other buttons (A and D on Keyboard, Left and Right on a Controller, respectively) to control their position on the rail, as well as avoid obstacles or hit track jumps. They also have the option to boost, making them temporarily, as long as they hold the button and have boost power, increase their top speed thus making the rail fly by faster. As this is a rail, the player is limited in the distance they can move to the left and right, in the game indicated by either a level obstacle like buildings or canyon sides, or by actual road rails like those seen on the side of highways. If the player hits these sides he will bounce off and move slightly towards the middle of the rail, while incurring a slight damage hit and their speed will drop, though this should be minimal to keep up the speed of the race. The picture below illustrates a typical Race Rail, with rail borders indicated in red.

[image: image28.png]
At the beginning of every asteroid is a landing platform, while at the end is a large space jump platform. These platforms are used to transition the player from a Race Rail to a Fly Rail. Landing platforms are simple transitions from space flight to landing on the track, with the only major transition being the control switch from flight controls to race controls. The player may also get a speed bonus, depending on how they navigated the Fly Rail, explained later. Space Jump Platforms are the opposite, taking the player from race controls to flight.

[image: image29.png]
When the player hits a Space jump, the camera should pan back slightly to give the player a wider view of the field. The player will then be launched into space, which places the player along the rail for our Fly Rail. On these rails, the player is able to move left and right, but the key here is to use boost with correct timing to get the most out of the rail. During the Fly Rail, the player uses his boost power to fly through space, forcing the player to travel through a certain number of Boost Rings. At these boost rings, the player will be required to time pressing the boost button just as they fly through the ring, which will give them a boost and allow them to fly even faster through the Fly Rail. When the player hits the boost button, dependant on the timing the player will receive a grade of Poor, Good, Very Good, and Perfect. Each rating will be accompanied by a sound, an error sound for poor, a small ding for good, a louder and longer ding for Very Good, and a loud guitar riff for Perfect. There will also be a text display over the speedometer and boost meter, signifying which rating the player received by the text and color, shown in the next illustration.

[image: image30.png]
The following illustration shows how this rating will be judged. As the player reaches the boost ring, they will be evaluated by how close they are to the ring when they press the boost button. By timing the button press to when they pass just inside the ring, they will achieve a perfect boost rating, with the rating going lower the farther away they are from the ring. The game keeps track of the total amount of rings on the track, and upon achieving a perfect boost on each ring in the Fly Rail, the player will receive a perfect landing and a speed boost upon the landing, as well as a full boost meter.

[image: image31.png]
Sense of Speed

Roid Racer is a high speed racer, and to able to do this we will have to implement some patterns and techniques to make you feel like you are going faster than you are. The objects such as obstacles and or lights can be placed in repeating patterns to create visual cues that make the player feel that he is flying at massive speeds. You can also recreate the same effect with repeating textures over objects so the eye can breakup the object from being completely smooth.

Another way we can simulate the sense of intense speed and acceleration is to use camera effects and shaders. The player will have the camera’s aspect ratio change, zoom out, the faster they are going, so when they are stopped the camera will be the closest. When they use their boost, or start their Fly Rail the screen will have a motion blur effect that will simulate a rattling and acceleration of the racer.

Game Logic, Algorithms, and Rules

Interaction Component Matrix

See ICM.xls
Key Game Algorithms

AI Turning

Turning for AI agents will be accomplished by a simple ‘look at’ algorithm based on a half-space test comparing the vehicle’s travel direction with the course direction. A half-space test calculating distance to the nearest waypoint will determine when to turn.

[image: image32.png]
In the diagram above, the green dot is the position of the vehicle. The vector from the nearest waypoint to the vehicle(green line) is determined and then projected along the course negative Z axis. This will determine the distance the vehicle is from the plane of the waypoint.

If the vehicle distance is within the turn distance defined for this waypoint, the vehicle will calculate the spatial relationship from its current X axis to the axis of the next course line Z axis. If the result of the relationship is positive, the vehicle will start a series of Y axis rotations in the positive direction, turning the vehicle right until vehicle crosses the plane of the new course line direction. Once the plane has been crossed, the vehicle will keep its position, but adopt the orientation characteristics of the course(red line).

Player Turning

Player turning will be accomplished by a series of axis interpolations:

// strafe just a little

ship.position += ship.axis_z + ((ship.axis_x – ship.axis.z) *
gamepad.XValue * fElapsedTime)
// interpolate front direction

ship.axis_z = ship.axis_z + ((ship.axis_x – ship.axis.z) *
gamepad.XValue * fElapsedTime);

// interpolate up direction

ship.axis_y = ship.axis_y + ((course.axis_y - ship.axis_y) *

fElapsedTime);

The X axis will be the result of calculating the cross product between the ship Y axis and the ship Z axis.

These calculations will smoothly orient the ship to the new course line when the gamepad isn’t being used and will turn using the gamepad XValue when it is used.

Speed

Speed will scale the top speed of the ship based on a predefined maximum of the course.

TOP_SPEED = 300.0;

ship.top_speed = TOP_SPEED * ship.attribute_speed;

Handling

Handling will affect the scaling of the turning factor of the ship.

ship.axis_z = ship.axis_z + ((ship.axis_x – ship.axis.z) *
(gamepad.XValue * ship.attribute_handling) * fElapsedTime);

Boost

Boosting will propel a ship to up to 50% faster than top speed.

ship.speed = ship.top_speed * (1.0 + (ship.attribute_boost * 0.5));
Shield

Shield will scale the amount of shield available before failure.

ship.max_shield = ship.attribute_shield * 100.0;

Hull

Hull will scale the amount of hull available before ship destruction.

ship.max_hull = ship.attribute_hull * 100.0;

Weapon

Weapon will affect the scaling of the refire rate for the primary ship weapon.

MAX_WEAPON_REFIRE = 1.0;

MIN_WEAPON_REFIRE = 0.25

ship.refire_rate = MAX_WEAPON_REFIRE +

((MIN_WEAPON_REFIRE – MAX_WEAPON_REFIRE) *

Ship.attribute_weapon);

p.att_handling) * fElapsedTime);

Rubberbanding

Rubberbanding will be achieved by calculating the distance to the player and scaling the speed of AI ships if the distance is too great.

RUBBERBAND_SCALE = 0.2f;

If (Distance_to_player > 20.0)

AI_ship.speed = AI_ship.top_speed * (1.0 –

RUBBERBAND_SCALE);

If (Distance_to_player < -20.0)
AI_ship.speed = AI_ship.top_speed * (1.0 +
RUBBERBAND_SCALE);

FAQ

What kind of racer is Roid Racer?

Roid Racer is a fast-paced combat racer.

What is the goal of the game?

The goal is to finish the race with as many points as possible and stay alive.
What system will the game be played on?

PC

Will the game come out for PS3/Xbox360/Wii platform?
At this time, Roid Racer is a PC exclusive.

What are the system requirements?

AMD 64, 1.5 GHZ

512 System RAM

Graphics card with 256 MB RAM.

Supports Shader 2.0
When will the game come out?

January, 2009

What ESRB rating are you trying to gain?
T for Teen

How much will it cost?

It is absolutely free.

Will Roid Racer be localized another language besides English?
No.

Who is the target audience?
Race enthusiasts ages 14 and up

Will there be multiplayer?

Yes.
How many players will be able to play?
Roid Racer supports one to two Players.

How hard will the game be?

The game will be easy to pick up, with increasing difficulty available for player choice.

How is scoring calculated?

The score is calculated based on your rank, in addition to actions achieved throughout the game. See Scoring section for a further breakdown.
Will there be worldwide rankings in addition to the local scoreboard?

No.

Will there be achievements?

No, we felt that leader boards would be sufficient.
Will I be able to fly as another ship?

Yes. There are five ships to choose from.

Will I be able to upgrade my ship?
Yes.

How does customization work?

The player will be able to add attribute upgrades during the ship selection.

Will there be combat?

Yes.
How does the combat work?

Players can be damaged in three ways: shooting a weapon forward, dropping a weapon behind you, or crashing into some object in the game.

What types of enemies will I encounter?

Enemies include other racers controlled by an AI or other human players.

Can your racer be destroyed?

Yes, when your overall hull reaches 0, the ship is out of the race.
How many levels are in the game?

There is currently only one level, but the amount of laps can be changed by the player.

How long is a typical level?

A typical level would run in the range of about seven minutes.

How long is a typical play session?

As many races as the player wishes to play.

How many levels are in the game?
At this time, there is one level.
Will this game support 3rd party modifications and/or player generated content?
No.

Will there be a level editor?
No.

(If above is no) Why not?
Due to other priorities within the development, a level editor is not going to be released to the public.

Can I change/mute the sound?
Yes.

Does Roid Racer support a “boss key” or alt-tabbing?
No.

What makes your Storm Bottled? And why is it Bottled?

Wouldn’t you like to know?
Reference of Key Elements

Scoring

Roid Racer is a racing game first and foremost. That means the player will be trying to finish the race in the fastest time possible. The players who have the fastest times will be put on the high score table. The player will also have a secondary goal, to gather as many points as possible. The combination of speed and points will allow a player to claim that he is the best Roid Racer out there. The racer will be able to gather points by performing actions during gameplay. One of the most common will come from shooting and bumping into other racers, to damage other racers, if they deal the killing blow to a racer, the player gains bonus points. In addition to combat actions gathering points, the player will get larger bonuses for doing race type actions such as using boost or overtaking other players, and conversely, loosing points for being overtaken by others.

	Action
	Points

	Hit opponent
	100

	Crash into Opponent
	500

	Destroy Opponent
	1000

	Overtake Opponent
	1000

	Be Overtaken
	-500

	Boost
	50

	Place
	1000(1 + MaxPlayers - Place)

	Boost Ring
	100

	All jump rings acquired
	1000

Winning/Losing

The player will be able to win the race by finishing the entire track and not crashing out of the race. The racer will start at the starting line; once the race begins they must avoid obstacles and acquire points to complete the race. When the player is either eliminated or wins the race, the race with end. Whichever outcome happens the player will be brought to the post race screen and see the results and score of the last race.
Transitions

When the player starts the game, they will go through a series of splash screens. After the splash sequences the player we will go through a camera sequence that that will zoom through space and close in on the space station in the center of the asteroid field. The screen will fade to black when the camera reaches the station, and move to a hangar scene. In the hangar scene the player will be able to choose their ship and their course difficulty. The screen will fade to black and come into the race, the camera will pan across the current asteroid and the starting area, and center around your racer. The UI would flash by a starting sequence and the race would start. The game would go on and once it was complete the player would be sent to a post game screen. After accepting they will be sent back to the race and ship selection screen. The game will have no save states, the player must be able to complete the race to save their score and get on the leaderboards.

Rewards

· Fastest Time

· Points Accumulated

· Combat Actions

· Race Actions

· Pickups

Art and Production Design

3D Art & Animation Deliverables

	Name
	Description

	bs_LightShipModel.x
	A model of the Light Ship, a fast vehicle with a hull and two large engines on the side, should be built to look sleek and quick, as this is the fastest ship.

	bs_HeavyShipModel.x
	A model of the Heavy Ship, a vehicle with a hull and two large engines on the side. This ship should have an emphasis on size and toughness, as this ship will be slow but very dangerous.

	bs_AverageShipModel.x
	A model of the Average Ship, a vehicle with a hull and two large engines on the side.

	bs_Level1Asteroid1.x
	The first asteroid in the level, with the track laid out and a on and off ramp at the exits of the asteroid. This asteroid also needs a start/finish line. (See Level for detail)

	bs_Level1Asteroid2.x
	The second asteroid of the level, with another track laid out upon it. (See Level for detail)

	bs_Missile.x
	The missile projectile for the Missile Special Weapon (See Weapons for detail)

	bs_TractorBeam.x
	The tractor beam ray for the Tractor Beam Special Weapon (See Weapons for detail)

	bs_BladeShield.x
	A special shield that has blades surrounding it, used for for the Blade Shield Special Weapon (See Weapons for detail)

	bs_SpatialSwap.x
	The projectile used for the Spatial Swap Special Weapon (See Weapons for detail)

	bs_ExplodingMine.x
	The mine for the Exploding Mine Special Weapon (See Weapons for detail)

	bs_GravityMine.x
	The mine for the Gravity Mine Special Weapon (See Weapons for detail)

	bs_DisrupterMine.x
	The mine for the Disrupter Mine Special Weapon (See Weapons for detail)

	bs_Laser.x
	The laser projectile for the Missile Special Weapon (See Weapons for detail)

	bs_SpaceStation.x
	A large circular space station floating in the middle of several asteroid tracks.

	bs_Hangar.x
	The hangar is a large room similar to a car garage, as it will house the vehicles of the game. The hangar should have large bay windows and doors for the ships to fly out of.

	bs_GuidanceArrow.x
	A large arrow used to warn the player of upcoming sharp turns and give guidance during the race.

	bs_BoostRing.x
	A large ring that floats in space, the ships target while transferring between asteroids. The ring should have an electrical charge running around and between it.

	bs_Sheild.x
	The basic shield that surrounds and protects a ship

	bs_Meteor.x
	A basic meteor that can be shot and destroyed by weapons

2D Art (HUD/Menu/Particle/Textures) Deliverables

	Name
	Description

	bs_TeamLogo.bmp
	The logo for the team, to be designed with the AD

	bs_RoidRacerTitle.bmp
	The title image for the game, to be seen on the Main Menu

	bs_MainMenuBackground.bmp
	The background image for the Main Menu Screen

	bs_SelectionPointer.bmp
	A small dot to indicate the current selection

	bs_SelectionHighlightBox.bmp
	A box to place around the current selection

	bs_SliderButton.bmp
	A button for slider options, movable by the player, this indicates what level the slider is currently at.

	bs_SliderBar.bmp
	The line that indicates all possible levels of a slider, including the min and max of the slider.

	bs_MenuOptionBackground.bmp
	A textured background for the options in a menu

	bs_MenuScreenBorder.bmp
	A texture that features a border to section off screens displayed on the MainMenu and the Hangar.

	bs_ToolTipBackground.bmp
	A textured background for tool tips that may appear over menu options. This should be resizable to fit the options text.

	bs_(ShipName)MenuPicture.bmp
	A small image of the ship indicated by (ShipName) used to show the ship during the Hangar Ship selection screen. (See Vehicles for a list of ships)

	bs_(Upgrade)MenuPicture.bmp
	A small image of the upgrade indicated by (Upgrade) used to show the weapon during Hangar Upgrade Selection Screen. (See Upgrades)

	bs_MissileMenuPicture.bmp
	A small image of the missile used to show the weapon during the Hangar Special Weapon selection screen

	bs_TractorBeamMenuPicture.bmp
	A small image of the tractor beam used to show the weapon during the Hangar Special Weapon selection screen

	bs_BladeShieldMenuPicture.bmp
	A small image of the blade shield used to show the upgrade during the Hangar Special Weapon selection screen

	bs_SpatialSwapMenuPicture.bmp
	A small image of the spatial swap used to show the weapon during the Hangar Special Weapon selection screen

	bs_ExplodingMineMenuPicture.bmp
	A small image of the exploding mine used to show the weapon during the Hangar Special Weapon selection screen

	bs_GravityMineMenuPicture.bmp
	A small image of the gravity mine used to show the weapon during the Hangar Special Weapon selection screen

	bs_DisrupterMineMenuPicture.bmp
	A small image of the special weapon indicated by (SpecialWeapon) used to show the weapon during the Hangar Special Weapon selection screen

	bs_SpeedometerBackground.bmp
	A small image background for the speedometer of the current ship. The speedometer is digital, so the background should be a plain space for placing the number with a small MPH at the bottom.

	bs_BoostMeterOutline.bmp
	A small meter to indicate the possible levels for each ships boost level.

	bs_BoostMeterFill.bmp
	The fill for the boost meter that can be manipulated to show the ships current level of boost.

	bs_LevelMinimap.bmp
	A mini map picture for the level indicated by

	bs_MinimapShip.bmp
	 A small picture of a triangle to overlay upon the minimap to indicate a vehicle

	bs_OptionsFont.bmp
	A font for displaying text upon the main menu

	bs_CreditsFont.bmp
	A font for displaying text on the credits screen

	bs_HudFont.bmp
	A font for displaying the text and numbers on the HUD, including timers and speedometers.

Sound Effects Deliverables

	Name
	Description

	SheildPowerDown.wav
	An emergency sound for when the player’s shield falls to 0%

	HullLow.wav
	An alarm sound for when the player’s ship hull is below 20%

	ShipGrind.wav
	This should be a grind as the ship falls and gnashes against the ground if the ships power fails.

	ShipExplode.wav
	This should be a loud detonation as the ship explodes.

	ShipEngine.wav
	This is the sound of the ships start and engine hum

	ShipDamage.wav
	This is the sound of the ship taking damage. It should be a small explosion.

	ShipJump.wav
	The sound of a ship hitting a ramp and taking flight, this should be a loud Swoosh as the ship hits top speed.

	ShipBoost.wav
	The sound of a ship hitting the boost button. This should sound like a small detonation as the boost engines kick in.

	RingBoost.wav
	A secondary boost sound for when the player goes through a boost ring. This should be slightly louder than the normal boost, and have more of an electrifying feel to it, as the boost is super charged.

	FireLaser.wav
	The sound of a ship firing its primary laser. The sound should be similar to an X-Wing fighter from Star Wars firing their laser weapon.

Music Deliverables

	Name
	Description

	MainMenuBackgroundMusic.wav
	The intro and menu music for the game, this should be an upbeat tune that illustrates the futuristic and space faring feel of the game.

	HangarBackgroundMusic.wav
	The Hangar music should still be upbeat, but more subtle than the Main Menu music. This should be similar to elevator music, though not overbearing, but with a futuristic and epic feel.

	CreditsBackgroundMusic.wav
	The Credits Music should be very upbeat,

	RaceResultBackgroundMusic.wav
	The Race Result music should be a quick but repetitive jingle, reflecting the celebratory nature of the end of the race.

	Level1Music.wav
	The level music should be very upbeat and high tempo, as it should reflect the quickness and speed the player encounters during the level, as well as an edgy feel to keep the player on their toes.

Cutscenes/Pre-rendered scene Deliverables

There are two main cutscenes we plan on putting into the game. The first is from the main menu to the character selection screen. When the player is at the main menu they will have a view of the overall asteroid field and space station in the background. When they have selected to move forward the menu will move off screen and the camera will start traveling through space dodging asteroids moving directly towards the space station. When the camera is about to collide with the station the screen fades to black, starting the transition to the ship selection screen.

The second cutscene will be at the start of the race. The camera will move from down the first stretch of track approaching the racers from their front. The camera will zoom over all the racers and turn around when it has passed them. The camera will then start its decent down towards your racer and set into race position.

Coding Standards
The coding standards of Bottled Storm are designed to facilitate readability and maintainability of the code base while avoiding incoherent standards and excessive coding fatigue on behalf of the programmer.
While these standards are encouraged and should be followed closely, they are guidelines and not ironclad rules. The Prudence Clause details the overall ideal of our coding stadard, and allows for exceptions to these rules should they become overly cumbersome in their application.

Prudence Clause
The following coding standards shall be maintained until and unless doing so will break one of the following clauses:
1. Readability

· The code should be easy to read and free from overly complex statements.

2. Understandability

· The code should be easy to interpret the overall goal and how it should be accomplished.

3. Maintainability

· The code should be easy to modify and refactor should the original code prove to be inadequate for our use.

Should any of the above be broken by following the following coding standards too closely, it is understandable and desirable to not follow the offending standard in order to regain the above three clauses.

Exception: Optimization

Should the programmer deem a section of code to be time-consuming unnecessarily and, through maintenance, discover a method for accelerating the process that breaks one of the above rules, it is the duty of the programmer to adequately comment said code in order to reinstate the above Clauses.

Naming Standards

Conventions:

· Descriptive names are to be used at all times
· Use prefixes to define the variable’s use and type (see A1)

· Follow the double camel hump format (see A1)

· Underscores are to be avoided, except in #defines

· “Magic Numbers” should be replaced with named variables or use #define
· Global variables should be rarely used

· #define constants will be in all caps, with underscores between “words” (eg. #define VEHICLE_SPEED 15)

· enumerations should be followed by a type name identifier (see A2)

· All enumeration variables are considered #define variables, thus they must follow the same naming convention (eg, ITEM_ONE)
· All enumerations must end with a constant that delineates the end of the set.
· Function names are exempt from the variable prefix rule

Exceptions:

· Standard loop variables (i, j, k) are exempt from the prefix notation and descriptive name rules provided the loop is less then 20 lines long and the Prudence Clause isn’t broken.

· Loop variables for coordinates (x, y, z) are exempt from the prefix notation and the descriptive name rules provided they follow the Standard Loop exception and are also used as coordinates explicitly.

· Use of the variable index or iter (or some derivative), when in reference to an object in an array, is exempt from the prefix notation rule.

A1: Variable naming convention
 A2: Enumerations

	Prefix

pTwoWords

Individual Words

	enum TypeIdentifier // type identity

{

 ITEM_ONE, // #define naming used
 ITEM_TWO,

 NUM_ITEMS // end of list identifier

};

Prefix Convention

Bottled Storm will use the following prefix notation to aid in readability and visual debugging. Hungarian notation was used as a guideline. Due to problems arising from refactoring, prefix confusion, and utilizing a type-safe language (C++), it is agreed upon that if individual prefixes become too complicated that they can be simplified down, judgment will be used in a similar manner to the prudence clause. The priority of the prefixes is also determined below, if there are more than two prefixes, which most cases do not warrant, the last prefix will be dropped. Example: Member Variable which is a vector of floats would be m_vVector instead of m_vfVector.
	Prefix
	Data Type
	Example
	Priority

	b
	Boolean
	bool bFlag
	3

	f
	float
	float fTime
	3

	d
	Double
	double dDistance
	3

	n
	Integer
	int nCount
	3

	l
	long
	long lUpperRange
	3

	h
	HANDLE
	HANDLE hWnd
	3

	c
	Character
	char cType
	3

	sz
	Character string or LPSTR string
	char * szName
	3

	p
	Pointer
	int * pnTriObject
	2

	g_
	Global
	int g_nYourMom
	1

	m_
	Member variable (used in classes to denote variables that belong to classes)
	int m_nPosX
	1

	C
	Class
	class CBox
	1

	t
	Struct
	struct tTriangle
	1

	vec
	Mathematical vector
	vec vecVert
	2

	mat
	Mathematical matrix
	mat matTranslate
	2

	BS_
	Asset prefix
	BS_asset
	NA

Structures

Conventions:

· Structure definitions will contain the prefix ‘t’ and it will follow the camel hump format

· Structures will be 32-bit aligned

· Structure members are exempt from the ‘m_’ variable prefix
Classes

Conventions:

· Class names will start with the ‘C’ prefix and it will follow the camel hump format

· All member variables in a class must have the ‘m_’ prefix

· Classes will be split between a declaration file (*.h) and an implementation file (*.cpp)

· The declaration file will not have any implementation code inside.

· The declaration file will contain the function comments explaining the implementation of each function

· All member variables will be declared private, with appropriate assessors and mutators for each variable

Exceptions:

· Inline functions are exempt from the declaration rule

· Templated classes should be contained within the declaration file (*.h), with the class declaration contained at the top, followed by the implementation.
Relevant Function Names

Conventions:

· Function names will follow the camel hump notation

· Function parameters will also follow the variable naming standards

Exceptions:

· Functions are exempt from the variable prefix notation
Macros and Constants

Macro Conventions:

· Macros are to be used to enhance readability

· Macros should not exceed one line

· Macros are considered #define constants, and should follow that naming convention

· Macros are to be declared in the top of the file they will be used in

Exceptions:

· If the macro is to be used across multiple files, it will be placed in the “include.h” file
· If the macro is part of a library, it must be declared in the appropriate header file

Constant Convention:

· Constants will be const variables

· Global constants will begin with the ‘g_’ extension

· Constants will be declared at the top of the file they will be used in

Exceptions:

· If the constant is to be used across multiple files, it will be placed in the “include.h” file, and externed

· If the constant is part of a library, it must be declared in the appropriate header file
Summary of Naming Convention

Conventions:

· Variable names will have a prefix

· Variables will follow the camel hump notation

· Structures will be byte aligned whereas classes are not

· Classes will be separated into header and implementation files

· #define constants should be eschewed in favor of constant variables

· Globals should be avoided

· Macros are to be a single line

· Remember the Prudence Clause
· Assets will use the studio naming convention

Commenting

The best kind of commenting is Self Documenting Code. The coding standards in place are designed around this key idea.

However, there are times when comments are necessary to support the Prudence Clause. In the course of our work there will be times when a programmer must break one of those clauses in order to properly implement some particular functionality, and no exception to the coding standards will remedy the problem. Commenting allows for the Prudence Clause to be maintained, even when the code itself is difficult to convey.

Essentially, the code should answer the “what” and “how” and commenting should answer the “why.”

Visual Studio Commenting Macros
In order to ease the use of commenting of standard items, such as class headers in .h and .cpp files and function headers, each programmer will have the option of using a commenting macro tool that will ask for some basic information and automatically format these headers appropriately.

Example .h header:

//

//

// File:

CAssetManager.h

// Date:

8/17/2008
// Creator:

Jimmy Leonis

// Description:
Preloader for all the game assets to cache and retrieve for later

//

use

//

//

Example .cpp header:

//

//

// File:

CAssetManager.cpp

// Date:

8/17/2008
// Creator:

Jimmy Leonis

// Description:
Implementation of the CAssetManager class

//

//
Example function header:

//

//

// Function:

LoadShip

// Last Modified:
12/13/2007

// Description:
Loads a ship from the given file

//

//

Example TODO block:

//

// TODO:
This is where the LoadBat function will be called
//

Example HACK block:
//

// HACK:
Inserted input here until Input Manager is completed
//

Data Alignment

Structures are going to be the basis of storage for a variety of information, and will be used repeatedly throughout the code. In order to factor down their individual memory footprint, 32-bit alignment of their member variables will be enforced. To aid the programmer in how their data should be aligned the following list of types detail the individual sizes of the default data types.

The following table lists the amount of storage required for fundamental types in Microsoft C++ for reference.

Sizes of Fundamental Types
	Type
	Size

	bool
	1 byte

	char, unsigned char, signed char
	1 byte

	short, unsigned short
	2 bytes

	int, unsigned int
	4 bytes

	__intn
	8, 16, 32 bits depending on the value of n. __intn is Microsoft-specific.

	long, unsigned long
	4 bytes

	float
	4 bytes

* The variable types double, long double, long long, and any __intn greater then 32 are all greater then 4 bytes, and are disallowed from byte aligned structures.
Coding Guidelines

1) Singleton classes must contain both an Initialize() and Shutdown() functions

2) Singleton classes also will return a reference when calling a reference function which is the class name without the prefix.

3) Classes must have a declaration file (*.h) and an implementation file (*.cpp)

4) Global variables should be avoided in favor of member variables and singletons
Development Environment

Compiler

· Microsoft Visual C++ compiler .NET 2005
Source Control
· AlienBrain 7.5.2.4592

Graphics API

· DirectX 9.0c August 2008

· Shader model 2.0

Sound API

· XACT 3.0 Windows Version: 9.24.0.0

Art Products
· Maya 8.5

· Photoshop CS2

Exporters

· Maya *.x exporter
Input
· Keyboard

· Mouse
Timing Specifications

 Roid Racer is bi-threaded, meaning that the windows message loop will run on the main thread, while the game itself will run on another thread. This will keep the main application from queuing up messages while the game updates and then handling them all at once trying to catch up.

Target Frame Rate: 60fps
	Application Thread
	%
	Game Thread
	

	
	
	
	

	Windows Messaging
	1
	Dispatch Manager
	1

	
	
	Timer Manager
	1

	
	
	Camera Manager
	1

	
	
	Asset Manager
	2

	
	
	Input Manager
	2

	
	
	Sound Manager
	3

	
	
	Update Bucket
	

	
	
	Effects Bucket

	2

	
	
	Bullet Bucket

	2

	
	
	Object Bucket
	10

	
	
	AI Bucket
	5

	
	
	Collision Bucket
	8

	
	
	Culling Bucket
	10

	
	
	Menu Bucket
	2

	
	
	Debug Bucket
	2

	
	
	Render Bucket
	

	
	
	Player1 Bucket

	

	
	
	Render FrontBack Bucket
	8

	
	
	Render Terrain Bucket
	8

	
	
	Render BackFront Bucket
	3

	
	
	Render HUD Bucket
	3

	
	
	Player2 Bucket
	

	
	
	Render FrontBack Bucket
	8

	
	
	Render Terrain Bucket
	8

	
	
	Render BackFront Bucket
	3

	
	
	Render HUD Bucket
	3

	
	
	Menu Bucket
	2

	
	
	Debug Bucket
	2

	
	
	
	

	
	
	
	

	Total:
	1
	Total:
	99

System Architecture

Description:

The game engine is a flexible series of sorted buckets that contain updatable objects or more buckets. The Update Bucket for instance may be thought of as a fixed pipeline where update operations are executed in a predetermined order. The same is true for the Render Bucket where the correct order must be maintained for the game to display as designed. By separating functionality as such, systems like the menu can call the Dispatch Manager to turn on and off bucket updates as it sees fit. For example, the pause menu is activated after the game starts. The menu will turn off the Update Bucket’s Game Bucket so that the game is frozen in time while it continues to render all of the objects currently in the scene. If the player chooses to resume the game, the Game Bucket will be turned back on for updating. If the player chooses to return to the main menu then the Game Bucket will remain off and the Render Bucket’s Player1 Bucket and Player 2 Buckets will be turned off, so that the only objects that are updating and rendering are menu and debug objects.

The functionality of the architecture primarily resides with the individual objects in the game. Every bucket will update all of its contained items, passing to the object the parent bucket. Once the object identifies the type of parent it has, it will execute the appropriate behaviors defined for that bucket. In addition, objects are responsible for placing themselves in the correct buckets. For instance, the player object responds to input requiring it to fire a laser blast. To do this the object will utilize the Asset Manager to create a bullet with its initial position, speed, and direction. Once the bullet is created, it knows that it belongs in the Bullet Bucket and will call the Dispatch Manager to place itself in that bucket. If the Bullet Bucket has not registered itself with the Dispatch Manager then the request is ignored, otherwise the object is added to the bucket.

With this architecture flexibility is the main feature. The ability to extend the functionality of the engine by adding more buckets for such things as physics or target prediction easily without breaking the design will be a huge savings in time for debugging and refactoring. Objects can be added to the system regardless of whether all of the buckets the object is designed to reside in exist or not, without breaking the build. Objects are completely componentized except for their relationships to global objects and are thoroughly reusable in later projects.

[image: image33.jpg]

Context Model Description:

· Game Thread

· Access to:

· Roid Racer

· Init()

· Update()

· Shutdown()

· Roid Racer

· Access to:

· CUpdateBucket

· Init()

· Update()

· Shutdown()

· CRenderBucket

· Init()

· Update()

· Shutdown()

· Accessed by:

· Game Thread

· Dispatch Manager

· Access to:

· All Buckets

· Add()

· Remove()

· Lock()

· Unlock()

· Accessed by:

· All Buckets

· Register()

· Unregister()

· Game Object

· AddToBucket()

· RemoveFromBucket()

· Game Object

· Access to:

· CGameManager

· Player1()

· Player2()

· Track()

· AIRacers()

· CObjectFactory

· CreateObject()

· ReturnObject()

· CCameraManager

· ActiveCameraCount()

· GetActiveCamera()

· SetActiveCamera()

· CEffectsManager

· CreateEffect()

· CSoundManager

· PlaySound()

· StopSound()

· PlaySong()

· StopSong()

· CPlayer

· Position()

· Direction()

· Speed()

· CTimeManager

· ElapsedTime()

· CreateTimer()

· ReturnTimer()

· CInputManager

· Keyboard()

· Mouse

· Gamepad()

· CAIManager

· PerformStateBehavior()

· PlanRoute()

· CDirect3D

· DrawLine()

· DrawSphere()

· DrawSprite()

· DrawText()

· DrawMesh()

· Accessed by:

· All Buckets

· Update()

· Render Bucket

· Access to:

· CDirect3D

· Clear()

· BeginScene()

· EndScene()

· Present()

· Accessed by:

· CRoidRacer

System Feature Breakdown

Singleton

Singletons are implemented in the engine by internally maintaining a static object of the type of the singleton. Using a static helper function to retrieve the instance of the object, the object will be returned as a reference whenever it is accessed.

Layout

The following is the typical design for a singleton:

· Class definition

class CCollisionManager

{

CCollisionManager();

CCollisionManager(const CCollisionManager &);

CCollisionManager &operator=(const CCollisionManager &);

public:

~CCollisionManager();

static CCollisionManager &GetInstance();

void Init();

void Update();

void Shutdown();

};

· Returning the instance as a reference
CCollisionManager &CCollisionManager::GetInstance()

{

static CCollisionManager instance;

return instance;

}

· Static helper function

static CCollisionManager &CollisionManager()

{

return CCollisionManager::GetInstance();

}
Module Design

· Norm Kelley

CBucket

Buckets are a central part of updating and rendering the system. Every frame starting at the Update Bucket, all contained buckets or bucket items will be updated. During the update, objects will add and remove themselves from render buckets. After all update buckets have been processed, the Render Bucket will render all of its contained items.

Dependencies
· Access to the following:

· CBucket

· CBucketItem

· Accessed by the following:

· CDispatchManager
· All buckets
Functions

	Return
	Name
	Parameters
	Description

	void
	Init
	Void
	Initializes the bucket

	Void
	Update
	BUCKET_ID eParentID
	Update buckets / bucketitems

	Void
	Shutdown
	void
	Clean up all contained objects

	Void
	Add
	CBucket *Item
	Retrieve Player1’s object

	Void
	Remove
	CBucket *Item
	Retrieve Player2’s object

	Void
	Add
	CBucketItem *Item
	Retrieve track information

	Void
	Remove
	CBucketItem *Item
	Retrieve container of AI racing agents

	Void
	Clear
	void
	Clear contents of the bucket

	BUCKET_ID
	BucketID
	Void
	Returns the ID of the bucket

	CBucket &
	Bucket
	Int nIndex
	Return the bucket at specified index

	Size_t
	NumBuckets
	Void
	Return the number of contained buckets

	CBucketItem &
	BucketItem
	Int nIndex
	Return the bucketitem at specified index

	Size_t
	NumBucketItems
	Void
	Return the number of contained bucket items

	Bool
	Locked
	Void
	Return the locked state

	Void
	Locked
	Bool bLocked
	Set the locked state

	Bool
	Sorted
	Void
	Return whether bucket is to be sorted

	Void
	Sorted
	Bool bSorted
	Set whether bucket is to be sorted

Sub Modules

CBucket

CBucketItem

Virtual Functions

~CBucket()

Void Init()

Void Update(BUCKET_ID eParentID)

Void Shutdown

Bucket IDs

UPDATE_BUCKET,

UPDATE_GAME_BUCKET,

UPDATE_EFFECTS_BUCKET,

UPDATE_BULLET_BUCKET,

UPDATE_OBJECT_BUCKET,

UPDATE_AI_BUCKET,

UPDATE_COLLISION_BUCKET,

UPDATE_CAMERA_BUCKET,

UPDATE_CULLING_BUCKET,

UPDATE_SOUND_BUCKET,

UPDATE_MENU_BUCKET,

UPDATE_DEBUG_BUCKET,

RENDER_BUCKET,

RENDER_GAME_BUCKET

RENDER_PLAYER1_FRONTBACK_BUCKET,

RENDER_PLAYER1_TERRAIN_BUCKET,

RENDER_PLAYER1_BACKFRONT_BUCKET,

RENDER_PLAYER1_HUD_BUCKET,

RENDER_PLAYER2_FRONTBACK_BUCKET,

RENDER_PLAYER2_TERRAIN_BUCKET,

RENDER_PLAYER2_BACKFRONT_BUCKET,

RENDER_PLAYER2_HUD_BUCKET,

RENDER_MENU_BUCKET,

RENDER_DEBUG_BUCKET,

Time to Complete Estimate

· 1 day
Module Author(s)

· Norm Kelley

CBucketItem

This module is the base class for all game objects that will reside in the system.

Dependencies
· Accessed by the following:

· All buckets
Functions
	Return
	Name
	Parameters
	Description

	void
	Init
	Void
	Initializes the bucket

	Void
	Update
	BUCKET_ID eParentID
	Update buckets / bucketitems

	Void
	Shutdown
	void
	Clean up all contained objects

	Void
	SortValue
	BUCKET_ID eParentID, int &nValue
	Retrieve integer sort value for parent bucket

	Void
	SortValue
	BUCKET_ID eParentID, float &fValue
	Retrieve float sort value for parent bucket

Virtual Functions

~CBucket()

Void Init()

Void Update(BUCKET_ID eParentID)

Void Shutdown

Void SortValue(BUCKET_ID eParentID, int &nValue)

Void SortValue(BUCKET_ID eParentID, float &fValue)

Time to Complete Estimate

· 1 day
Module Author(s)

· Norm Kelley
CCameraManager
This module is responsible for containing and updating all the cameras currently in the game. It handles loading and initializing of each camera, as well as handling transitions from one camera to another.

Dependencies
· Accessed by the following:

· Global

· Game Object
· Dispatch Manager
· Render Bucket
Functions
	Return
	Name
	Parameters
	Description

	void
	Init
	
	Initialize the camera manager

	void
	Shutdown
	
	Shutdown the camera manager

	int
	LoadCamera
	string name // name of the camera

to be loaded

CBaseCamera // the camera to be loaded
	Loads in the camera of the indicated name and returns the index of the camera

	void
	SetupCamera
	int index,

RECT rDrawArea,

D3DXMATRIX * mpView,

float fFieldOfView,

float fAspectRatio,

 float fZNear,

float fZFar
	Sets up the camera with the specified view information

	void
	SetCameraActive
	int index
	Activates the camera indicated by the index

	void
	GetCamera
	int index
	Returns the camera at the indicated index

	void
	Update
	
	Updates all currently active cameras

	void
	GetInstance
	
	Returns an instance of the camera manager

Features
· Loads and maintains all cameras

· Maximum of 128 individual cameras

Sub Module

CBaseCamera – an abstract base camera class

Virtual Functions:

GetProjectionMatrix

SetProjectionMatrix

BuildPerspective

GetViewMatrix

SetViewMatrix

Derived Cameras:

Static Camera - basic camera, does not move

Follow Camera – trails behind a location, hard attach style

Time to Complete Estimate

· 2 days

· Research

· Framework

Module Author(s)

· Winston Miller

CAIManager
This module is responsible for managing all Artificial Intelligence (AI) modules in the game, which consists of AI controlled racers. The manager maintains a list of all AI in the game and gives limited control to the engine to manage the update of the list.

Dependencies
· Access to the following:
· Accessed by the following:

· Game Object
· AI Bucket
Functions
	Return
	Name
	Parameters
	Description

	void
	Init
	
	Initializes the AI manager

	void
	Shutdown
	
	Shuts down the AI manager

	int
	AddModule
	AIModule theModule

// AI Module to add in
	Takes in an AI module to add to the list of AI modules, returns the index of the added module

	void
	RemoveModule
	int index
	Removes the indicated module from the manager

	void
	ActivateModule
	int index
	Activates an AI module for updating, adds it to the active list

	void
	DeActivateModule
	int index
	Turns off indicated modules Update, takes the module out of the active list

	void
	Update
	
	Updates all active AI modules

	void
	PauseActive
	
	Suspends all currently active AI modules

	void
	StartActive
	
	Re-activates all currently active but suspended AI modules

Features
· Manages Racer AI

· Controls Rubberbanding

Sub Modules

AIModule – a base AI class for AI controlled racers

Contains and updates (if active) the modules current state.

Functions:

Update

BasicState – an abstract base class for all AI controlled states

Virtual Functions:

Init

Update

Shutdown

Derived Classes:

Light

Medium

Heavy

Time to Complete Estimate
· 4 days

· Research – 1 day

· Framework and Implementation – 2 days

· Testing and Integration – 1 day

Module Author(s)

· Winston Miller

CSoundManager
This module is responsible for loading and maintaining all sounds available to the game, including special effect sounds and background music. The module is a wrapper for Direct X’s XACT3 sound system, which controls the loading and play back of all music through api calls. To ensure sound memory management, waves will be contained in two separate XACT3 wave banks. One wave bank will be an in-memory bank, containing smaller sized waves used for sound effects and sounds of short length, while the other wave bank will be a Streaming wave bank, to contain longer length background music.

Dependencies
· Accessed by the following:

· Global
Functions
	Return
	Name
	Parameters
	Description

	void
	Init
	
	Initializes the sound system and XACT3. It also loads the games sound and wave banks.

	void
	Shutdown
	
	Shutdown XACT3

	void
	Play
	string name

// The name of the sound to play
	Starts or continues the sound indicated by the name

	void
	PlayStreaming
	string name
	Starts or continues a streaming sound indicated by the name

	void
	Pause
	string name
	Suspend the sound indicated by the name

	void
	Stop
	string name
	Stop the sound indicated by the name

	void
	PauseAll
	
	Suspends all currently playing sounds

	void
	StopAll
	
	Stops all currently playing sounds

Features
· Loads and plays all game sounds

· Wrapper for the DirectX XACT3 system

Time to Complete Estimate
· 1 day

Module Author(s)

· Winston Miller

CTimer
This module is responsible for centralizing the game timing mechanisms used throughout the program. This includes the master time step and manages individual countdown timers. The system is global, and is accessed through its singleton interface.

Dependencies
· Access to the following:

· None

· Accessed by the following:

· Global access
Functions
	Return
	Name
	Parameters
	Description

	Double
	TimeStep

	void
	Returns the amount of time since the last frame in seconds.

	Double
	GetTimer
	Int nID
	Returns the current time left on hTimer in seconds

	Bool
	PauseTimer
	Int nID
	Pauses hTimer

	Bool
	PlayTimer
	Int nID
	Resumes hTimer

	int
	CreateTimer
	Int nTime
	Creates a countdown timer and returns a reference handle with nTime amount of seconds

	Bool
	DiscardTimer
	Int nID
	Removes hTimer from the list of timers

	bool
	SetTimer
	Int nID

Int nTime
	Sets hTimer to nTime seconds

	Bool
	Update
	Void
	Updates the global time step and the individual timers.

Features
· Is a centralized source for the game’s master time step

· Can create arbitrary stopwatch timers for use with game specific content

· Maximum of 512 active timers

Countdown Timer structure

The countdown timers will be stored in a vector array inside the game timer. Individual timers will be accessible through handles. The game timer’s Update function also updates these individual timers
struct tTimer

{

float dTimeLeft;
// in seconds

float dStartTime;

bool bIsActive;

bool bCountDown;
// does this timer count up or count down?

};
Time to Complete Estimate

· 1 day

· Implementation

· Testing

· Integration

Module Author(s)

· James Leonis

CDirect3D
This module is responsible for providing an interface for Direct3D and managing some of the underlying functionality required for Direct3D applications.

Dependencies
· Accessed by the following:

· Global access
Functions
	Return
	Name
	Parameters
	Description

	Bool
	Initialize

	HWND, int width, int height, bool windowed, bool vsync
	Initializes the Direct3D device and prepares the application for drawing.

	Bool
	Shutdown
	Void
	Shuts down Direct3D and frees associated resources.

	Void
	Clear
	Uchar Red, uchar green, uchar blue
	Clears the screen to the desired color

	Bool
	DeviceBegin / DeviceEnd
	Void
	Enables the device to be drawn to.

	Bool
	LineBegin / LineEnd
	Void
	Enables lines to be drawn onto the screen

	Bool
	SpriteBegin / SpriteEnd
	Void
	Enables sprites to be drawn to the screen

	Void
	Present
	Void
	Presents the rendered scene

	HRESULT
	SetRenderState
	D3DRENDERSTATETYPE Type, DWORD dwValue
	Sets the specified value to the render state type

	HRESULT
	GetBackbuffer
	LPDIRECT3DTEXTURE9 * ppTexture
	Retrieves a backbuffer texture from the device

Features
· Is a centralized source for all Direct3D functionality

· Abstracts away the mechanics needed to start, run, and stop a Direct3D application

Time to Complete Estimate

· 1 day

· Implementation

· Testing

· Integration

Module Author(s)

· James Leonis

CAssetManager
This module is responsible for the universal loading and referencing of assets needed for the game. This central repository is designed to universalize the access to game resources and provide basic software instancing. It also preloads the basic filenames by transversing through the folder hierarchy for all the game assets so they can be loaded without needing to reference the relative file structure.

Dependencies
· Access to the following:

· None

· Accessed by the following:

· Global access
Functions
	Return
	Name
	Parameters
	Description

	int
	GetAssetID

	Const char * szFilename
	Loads the resource and returns a handle to that resource

	CBaseTemplate *
	GetAssetByID
	Int nID
	Returns the information for the specific asset.

Features
· Is a centralized source for all the game’s assets

· Creates a simple software instancing manager

· Preloads all asset information on startup

Associated Risks
	Risk:
	Affected Resource:
	P
	C
	RF

	The manager cannot load a particular file or the file is loaded incorrectly.
	James Leonis
	.4
	.2
	0.52

	
	Response or avoidance:

	
	Check the file to make sure it conforms to that file type’s XML scheme.

Check the import function and exporter to make sure both function correctly.

If the problem persists by Alpha, build a custom importer for that asset.

Sub-modules

CBaseTemplate

This is the base template used by all following templates for storage in the asset vector.

class CBaseTemplate

{

public:

AssetType m_nType;

};

tAssetInfo

The underlying struct that is stored in the asset vector. pTemplate points to a CBaseTemplate object that describes the specific asset information. When an asset is called, the pTemplate pointer is returned.
struct tAssetInfo

{

char szName[STR_BUFFER_SIZE];

char szPath[MAX_PATH];

CBaseTemplate* pTemplate;

bool bActive;

};

Sample Derived Template
This is a sample derived template for storage in the asset vector.

class CTexture : public CBaseTemplate

{

public:

CTexture()

{

m_nType = TEXTURE;

}

virtual ~CTexture()

{

SAFE_RELEASE(pTexture);

}

LPDIRECT3DTEXTURE9
pTexture;

int

nWidth;

int

nHeight;

D3DFORMAT

Format;

};
Time to Complete Estimate

· Basic framework – 1 day

· Scheme and importer for each asset type – 1 day each

· Textures

· Models

· Sounds

· Waypoints

Module Author(s)

· James Leonis

CEffectSystem

This module is the manager of effects achieved through the use of quads, primitives, textures, shaders, lights, and sounds. It acts as a central repository and manager for all effects. When an effect is complete, it is removed from the update list and is flagged as inactive.

Dependencies

· Access to the following:

· None

· Accessed by the following:

· Global Access
Functions
	Return
	Name
	Parameters
	Description

	Void
	UpdateEffects
	void
	Takes the effects in the scene and updates them

	Void
	RenderEffects
	Void
	Takes the effects in the scene and renders them

	Int
	AddEffect
	Char
	Added when a CEffectObject gets added to the game

	Void
	RemoveEffect
	Int
	Removed when the effect runs out or the CEfectObject tied to this effect gets destroyed.

Features
· Central manager for all effects used at any given time in the game.

· Maximum of 128 active effects.

· The effects array is preallocated at compile time to reduce the calls to new and delete
Sub Modules
CEffectTemplate
When an effect is needed, the CEffectTemplate gets filled out by the asset manager and pushing into a vector held by CEffectSystem, when an effect gets created it bases all its information on the template ID/Enumeration that it corresponds to.

Time to Complete Estimate

· Effects Manager – 2 days

· Particles – 3 days

· Effect Parts – 5 days

· Quads / Primitives

· Textures

· Shaders

· Lights

· Sounds

· Effect XML scheme – 1 day

Module Author(s)

· James Leonis

CHUD

This module is responsible for updating and rendering the HUD in the Roid Racer. Information for the HUD will be obtained from the player.

Dependencies

· Access to the following:

· Font Manager
· Accessed by the following:

· Update Bucket
· Render Bucket
Functions

	Return
	Name
	Parameters
	Description

	Void
	Initialize
	Void
	Load all assets the HUD needs and add the HUD to the appropriate buckets.

	Void
	Shutdown
	Void
	Remove the HUD from the appropriate buckets.

	Void
	SetInfo
	Const int nPlayerRank,

Const float fPlayerHealth,

Const float fPlayerShield,

Const int nPlayerSpeed,

Const int nPlayerScore,

Const float fRaceTime
	Sets all the information to be displayed on the screen.

	Bool
	Update
	Const float fDeltaTime
	Update the HUD: timed animations, etc.

	Void
	Render
	Void
	Render all the HUD information.

Time to Complete Estimate

· Framework – 1 day

· Render everything to screen, minus minimap – 5 days

· Update and render minimap – 4 days

Module Author(s)

· Joshua Johns
CFontManager

This module is responsible for loading, managing, and rendering the fonts in Roid Racer.

Dependencies

· Access to the following:

· Asset Manager
· Accessed by the following:

· Global Access

Functions

	Return
	Name
	Parameters
	Description

	void
	LoadFont
	Const char* szTexture,

Const char* szName
	Load the font and toss it into a list of fonts. Fonts are paired: ID for asset manager and a name used to determine what font to use in the draw function.

	Void
	DrawFont
	Const char* szName,

Const string szText,

Const int XPosition,

Const int YPosition,

Const float fScaleX,

Const float fScaleY,

D3DCOLOR Color
	Draws the text, using the specified texture, to the screen at the specified position, scaled by the specified scale, and set to the specified color.

Time to Complete Estimate

· 1 day

· Implementation

· Testing

· Integration

Module Author(s)

· Joshua Johns
CMenuSystem

This module is stack based and responsible for managing all of the menus in the game. Every time the user opens a new menu, it is pushed onto the stack, and if the user chooses to go back a menu, it is pope off of the stack. Only the top menu is updated and rendered.

Dependencies

· Access to the following:

· Font Manager
· Accessed by the following:

· Roid Racer

· Update Bucket

· Render Bucket
Functions

	Return
	Name
	Parameters
	Description

	Void
	Initialize
	INIT_TYPE Menu
	Initializes the menu manager specifying which menu to start off in.

	Void
	Shutdown
	Void
	Clean up all the menus and return control to the game.

	Void
	PushMenu
	MENU_TYPE
	Push a new menu onto the stack.

	Void
	PopMenu
	Void
	Pop the top menu off of the stack.

	Void
	Update
	Const float fDeltaTime
	Update the menu at the top of the stack.

	Void
	Render
	Void
	Render the menu at the top of the stack.

Sub Modules

CBaseMenu – Abstract base class

CIntro

CMainMenu

CShipSelectMenu

COptionsMenu

CCreditsMenu

CEndRaceMenu

CHighScoreMenu

Time to Complete Estimate

· 13 days
· Framework – 1 day
· GUI Interface – 3 days
· Main Menu – 1 day

· Options Menu – 1 day
· Pause Menu – 1 day
· Intro Menu – 1 day
· End Race Menu – 1 day

· Vehicle Select Menu – 2 days

· Integration – 2 days
Module Author(s)

· Joshua Johns

Game Feature Breakdown

CGameManager

This module is responsible for globally containing game objects that other objects in the game will use to make informed decisions.

Dependencies
· Access to the following:

· CPlayer

· CTrack

· Accessed by the following:

· Global Access
Functions

	Return
	Name
	Parameters
	Description

	void
	Init
	HINSTANCE hInst, HWND hWnd
	Initializes the game manager

	Void
	Shutdown
	Void
	Clean up all contained objects

	Void
	Update
	void
	Update the game manager

	Void
	Reset
	Bool bGame
	Reset game objects to restart race if bGame true, otherwise reset to AI demo

	CPlayer &
	Player1
	Void
	Retrieve Player1’s object

	CPlayer &
	Player2
	Void
	Retrieve Player2’s object

	CTrack &
	Track
	Void
	Retrieve track information

	Vector<CAIRacer *>
	AIRacers
	Void
	Retrieve container of AI racing agents

Sub Modules

CPlayer

CTrack

CAIRacer

Time to Complete Estimate

· 1 day
Module Author(s)

· Norm Kelley

CPlayer

This module is responsible for containing information about a specific player.

Dependencies
· Access to the following:

· Accessed by the following:

· Global Access via CGameManager
Algorithms
· Player Turning

Player turning will be accomplished by a series of axis interpolations:

// strafe just a little

ship.position += ship.axis_z + ((ship.axis_x – ship.axis.z) *

gamepad.XValue * fElapsedTime)

// interpolate front direction

ship.axis_z = ship.axis_z + ((ship.axis_x – ship.axis.z) *

gamepad.XValue * fElapsedTime);

// interpolate up direction

ship.axis_y = ship.axis_y + ((course.axis_y - ship.axis_y) *

fElapsedTime);

The X axis will be the result of calculating the cross product between the ship Y axis and the ship Z axis.

These calculations will smoothly orient the ship to the new course line when the gamepad isn’t being used and will turn using the gamepad XValue when it is used.

· Speed
Speed will scale the top speed of the ship based on a predefined maximum of the course.

TOP_SPEED = 300.0;

ship.top_speed = TOP_SPEED * ship.attribute_speed;

· Handling

Handling will affect the scaling of the turning factor of the ship.

ship.axis_z = ship.axis_z + ((ship.axis_x – ship.axis.z) *

(gamepad.XValue * ship.attribute_handling) * fElapsedTime);

· Boost

Boosting will propel a ship to up to 50% faster than top speed.

ship.speed = ship.top_speed * (1.0 + (ship.attribute_boost * 0.5));

· Shield

Shield will scale the amount of shield available before failure.

ship.max_shield = ship.attribute_shield * 100.0;

· Hull

Hull will scale the amount of hull available before ship destruction.

ship.max_hull = ship.attribute_hull * 100.0;

· Weapon

Weapon will affect the scaling of the refire rate for the primary ship weapon.

MAX_WEAPON_REFIRE = 1.0;

MIN_WEAPON_REFIRE = 0.25

ship.refire_rate = MAX_WEAPON_REFIRE +

((MIN_WEAPON_REFIRE – MAX_WEAPON_REFIRE) *

Ship.attribute_weapon);

p.att_handling) * fElapsedTime);

Functions

	Return
	Name
	Parameters
	Description

	Void
	Init
	HINSTANCE hInst, HWND hWnd
	Initializes the player

	Void
	Shutdown
	Void
	Clean up all contained objects

	Void
	Update
	BUCKET_ID eParentID
	Update the player

	float
	AttribSpeed
	void
	Retrieve Player’s speed attribute

	float
	AttribHandling
	void
	Retrieve Player’s handling attribute

	float
	AttribBoost
	void
	Retrieve Player’s boost attribute

	float
	AttribShield
	void
	Retrieve Player’s shield attribute

	float
	AttribHull
	void
	Retrieve Player’s hull attribute

	float
	AttribWeapon
	void
	Retrieve Player’s weapon attribute

	float
	CurrentSpeed
	void
	Retrieve Player’s current speed value

	float
	CurrentHandling
	void
	Retrieve Player’s current handling value

	float
	CurrentBoost
	void
	Retrieve Player’s current boost value

	float
	CurrentShield
	void
	Retrieve Player’s current shield value

	float
	CurrentHull
	void
	Retrieve Player’s current hull value

	float
	CurrentWeapon
	void
	Retrieve Player’s current weapon value

Sub Modules

CBucketItem – base class

Time to Complete Estimate

· 16 days
· Object definition

- 1 day
· Player steering via input
- 2 days
· Player acceleration

- 1 day
· Player boost

- 1 day
· Player boost rings/rail

- 2 days
· Player collision

- 3 days
· Player damage

- 1 day
· Player regen

- 1 day
· Player use pickup

- 2 days
· Player crashout

- 1 day
· Player win

- 1 day
Module Author(s)

· Norm Kelley

 CTrack

This module is responsible for containing track information that other objects in the game will use to make informed decisions. This object will get populated with information when loading level information.

Dependencies
· Access to the following:

· tCourseLine structure

· Accessed by the following:

· Global Access via CGameManager
Functions

	Return
	Name
	Parameters
	Description

	void
	Init
	void
	Initializes the track

	Void
	Shutdown
	Void
	Clean up all contained objects

	Void
	Update
	BUCKET_ID eParentID
	Update the game manager

	Vector<tCourseLine>&
	CourseLines
	Void
	Retrieve contained courselines

Sub Modules
tCourseLine

Time to Complete Estimate

· 1 day
Module Author(s)

· Norm Kelley

CCollisionManager

This module is responsible for facilitating the testing of bounding volumes against one another. It also handles the collision reaction between different objects.

Dependencies
· Access to the following:

· Dispatch Manager

· Accessed by the following:

· Update Bucket
· Collision Bucket
Functions
	Return
	Name
	Parameters
	Description

	void
	Init
	void
	Initializes the track

	Void
	Shutdown
	Void
	Clean up all contained objects

	Void
	Update
	BUCKET_ID eParentID
	Update the game manager

	Bool
	Test
	CSphere

CSphere
	Tests two spheres together, returns true if they intersect

	Bool
	Test
	CSphere

tPlane
	Checks to see if a sphere has intersected with a specific plane

	Bool
	Test
	CSphere

Vector<tTri>
	Checks to see if a sphere has intersected with any of the triangles in the vector

	Bool
	Test
	CSphere

CAABB
	Checks to see if the sphere has intersected with the AABB

Sub Modules

tPlane

tTri

Time to Complete Estimate

· 3 day
Module Author(s)

· John Rodenburg

· Norm Kelley

Milestone Deliverables

Proof of Concept
· Driving

· Bucket Management System

· Input processing

· Object Management

· Render System

· Input
· DirectInput Wrapper

· XInput Wrapper

· Camera System

· Camera management

· Object Hierarchy

· Static Objects

· Level

· Renderable (non-colliding)

· Dynamic Objects

· Racer

· PlayerRacer

· Player – Visual Representation

· Render

· Update

· Input handling

· Boost

· Input

· Player

· Path following

· Waypoints

· Course Line

· Basic AI (Track following)

· Agent

· Object Hierarchy

· Racer

· AIRacer

· Waypoint turning

Feature Fragment #1
· Bumping

· Collision Detection

· Sphere

· AABB

· Collision Reaction

· Levels

· Track Pieces

· File I/O

· Mesh Rendering

· Checkpoint system

· Checkpoint

· Trigger System

· Rank/Crash Out (Win/Lose)

· Player-- Attributes added

Feature Fragment #2
· Shooting

· Weapons

· Primary

· Secondary

· Collision Detection

· Lasers

· Missiles

· Mines

· Object Hierarchy

· Weapons

· Bullets

· Missiles

· Mines

· Pickups

· Weapons

· Boost

· Regeneration (Shield or Hull)

· Jump Rails -- Boost charge system

· Boost Ring

· Advanced AI

· Rubberbanding

· Combat

· Bumping

· Shooting

Alpha

· Multiplayer

· Bucket Management System

· Player specific buckets

· Sense of speed

· Object Hierarchy

· Static Objects

· Renderables

· Balanced Racing Gameplay

· Speed and Acceleration

· Object avoidance

· Turning

· Variable number of laps

Beta
· Rank (During race)
· Balanced Combat Gameplay

· Crashing out

· Weapon Damage

· Rate of Fire
Appendix A
Memory Map

Total memory footprint here (128MB)

	4 Meg for Executable

	8 Meg for Level information

	32 Meg for Model data

	32 Meg for Texture data

	32 Meg for Sound data
	16 Meg for background music

	
	16 Meg for object sound effects

	8 Meg for Effects

	8 Meg for Object management
	4 Meg for collision data

	
	4 Meg for object list

	2 Meg for Player data

	2 Meg for Misc

Integration Plan
Bottled Storm Studios integration plans are managed by the Technology Lead, Norm Kelley. He is responsible for maintaining the source control AlienBrain. Before every milestone, and every Saturday, there is time set aside to review and integrate all the candidates for integration, do code reviews, and test the new integrations.

In order to be considered for integration, all modules will have to undergo a unit test of its major features. Each module’s author is responsible for creating the unit test environment and it will be reviewed by the team as a whole. To be considered for integration, each module must not have Compiler Errors, Critical Bugs, and should have been checked for memory leaks. The acceptable amount of medium or low bugs is 10 bugs per 1000 lines of code.

Should the module fail to integrate into the code, the following must be done for further testing:
· Determine if the bug is repeatable

· Determine the location of the crash

· Determine the fault, either within the integrated module or other modules

· If fault is with the incoming module, remove the module for retesting

Should the build reach an irreparable state during integration, and attempts to rectify the situation manually have failed, a full rollback might be necessary. An irreparable state is a point where the build has multiple critical bugs that prevent the game from compiling, building, and/or running. After the team has attempted to rectify the situation and is still met with failure, the team shall a vote to roll back the build. If a unanimous consensus can’t be reached, the Technology Lead will then roll back to a previous stable release.

As each member works on their portion of the build, they should check out only the files they will be directly interfacing with. No other team member is allowed to edit code that is currently checked out by another. When editing is complete, the file will be checked back in no later then midnight of that day. By 2am that morning, an automated build will be made for use the next day. The two hour delay between the check-in time and the automated build time is to prevent user error in the case where an item wasn’t checked in on time, which could lead to problems during the automated build and possibly render the build unusable.
Testing Plans
There will be two methods of testing that we implement. The two phases of testing will follow an iteration format, in alternating formats. The first format will be internal development testing, the second would be external focus group testing. Internal developer testing will be intermittent during the production, while external group testing will be implemented through milestone testing.

Internal testing is to be done initially by the module’s author with unit tests. As the code is integrated, testing will be managed by the creator of said module. As bugs are discovered, they will be added to the bug database for later assignment. The bug database is maintained by the Project Lead, John Rodenburg.

In addition to internal testing, focus groups will be used, via the internet and forum distribution. We will facilitate the testing of our game at critical milestones. These milestones will be critical to gameplay and determined when the team feels a build is playable and needed to be tested. During this testing phase there will be an open communication between the testers and developers. There will be a Ventrilo server provided by John Rodenburg and the details will be posted on a gaming news website when the testing occurs.

The bug list will be divided up according to the offending module’s author every night. If the original author fails to diagnose and begin repairing the bug within a reasonable timeframe, the bug shall be reassigned to another team member.

The bugs shall be listed in the following priority:

· Critical

· Bugs that crash the game or render it unplayable

· Are to be worked on immediately

· High

· Bugs that, while the game starts and plays, breaks critical components and/or ruins the gameplay experience

· These will be worked on immediately after Critical bugs

· Medium

· Bugs that generally cause inconveniences to gameplay

· These will be worked on before milestones and integrations

· Low

· Bugs that cause graphical glitches and/or rarely influence gameplay

· These shall be worked on as time is available

The status is where the bug is currently in the debug process. Each status comes after the one above it, with the exception of Abandoned:

· Created

· The bug was just reported and is awaiting to be assigned

· Assigned

· Bug is assigned to a team member and is waiting to be worked on

· Working

· Team member is currently working on the bug

· Stalled

· Work on this bug is stalled. The team member must describe the reason in the dev report

· Complete

· The bug has been fixed
· Sent back to tester

· Bug is either presumably fixed and awaiting further testing.

· Bug is invalid for the following reasons:

· Insufficient or vague description

· Unrepeatable

· Bug is a “feature”

· Abandoned

· The bug has been abandoned. Team member must list the reasons why the bug should be considered abandoned, list the last status of the bug before abandonment, and the team lead must be informed.

Sample Bug Report
Name:

AI is too accurate

ID:

155

Priority:

Medium

Status:

Working

Brief Description:
The AI for the light ship is far too quick and accurate with his weaponry. This causes minor annoyances during gameplay where the AI constantly shoots at the player. This is most common during straight portions of the track on the second asteroid.

Assigned:

Winston

Dev Report:

11/5/08 - Debugging started

11/5/08 – Found reason. AI wasn’t implemented with random error in targeting code, thus it was always aiming at the player.

Appendix B
Game Folder Hierarchy

[image: image34.jpg]
PAGE

